- Главная
- Справочник
- Законы
- Закон Ампера
- Закон Ампера
- Значение закона Ампера
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: \( \overrightarrow{F} \),\( \overrightarrow{F}_{A} \). Сила (\( \overrightarrow{F} \)), которая действует на прямолинейный проводник с током (I), всегда перпендикулярна проводнику и направлению вектора магнитной индукции (\( \overrightarrow{B} \)). В том случае, если прямолинейный проводник расположен параллельно вдоль направления линий магнитного поля, поле не действует.
Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.
Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.
Закон Ампера
Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.
Для прямолинейного проводника сила Ампера
имеет вид:
\[ \large{\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot \overrightarrow{l} \cdot sin(α) \]
где: \( I \) — сила тока, которая течет в проводнике, \( \overrightarrow{B} \) — вектор индукции магнитного поля, в которое проводник помещен, \( \overrightarrow{l} \) — длина проводника в поле, направление задано направлением тока, \( \alpha \) — угол между векторами \( \overrightarrow{l\ }и\ \overrightarrow{B} \).
Этой формулой можно пользоваться:
- если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
- если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
\[ \large{d\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot d\overrightarrow{l} \cdot sin(α) \]
Сила магнитного взаимодействия
Сила, действующая на проводник с током со стороны магнитного поля, была названа в честь первооткрывателя — силой Ампера. Эксперименты показали, что модуль силы Ампера F пропорционален длине проводника L и зависит от пространственного положения проводника в магнитном поле.
Для количественного описания действия магнитного поля на проводник с током была введена величина, названная магнитной индукцией B. Тогда сила Ампера будет равна:
$F = B*I*L$ (1),
где I — сила тока. Эта формула справедлива при вычислении модуля максимального значения силы Ампера, действующей на прямолинейный проводник в магнитном поле, вектор магнитного поля B направлен под 900 к вектору тока I.
Если проводник расположен под углом α к вектору магнитной индукции B, то вместо формулы (1) следует применять следующую формулу:
$F = B*I*L*sinα$ (2).
Значение закона Ампера
На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \( 2\cdot {10}^{-7}Н \) на каждый метр длины.
Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \( 2\cdot {10}^{-7} \) Ньютона.
Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.
ЗаконыФормулы Физика Теория Электричество Закон
Источник
Закон Ампера. Взаимодействие параллельных токов
Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы. Обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF, с которой магнитное поле действует на элемент проводника dl
с током, находящегося в магнитном поле, прямо пропорциональна силе тока
I
в проводнике и векторному произведению элемента дли-
ной dl проводника на магнитную индукцию В:
dF = I
[d
l, В]. (111.1)
Направление вектора dF может быть найдено, согласно (111.1), по общим правилам векторного произведения, откуда следует правило левой руки:если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.
Модуль силы Ампера (см. (111.1)) вычисляется по формуле
dF = IB
d
l
sina, (111.2)
где a — угол между векторами dl и В.
Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I
1и
I
2 (направления токов указаны на рис. 167), расстояние между которыми равно
R.
Каждый из проводников создает магнитное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока
I
1 на элемент d
l
второго проводника с током
I
2. Ток
I
1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. Направление вектора
b1 задается правилом правого винта, его модуль по формуле (110.5) равен
Направление силы dF1, с которой поле B1действует на участок dl
второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, согласно (111.2), с учетом того, что угол a между элементами тока
I
2 и вектором
B1 прямой, равен
dF
1=
I
2
B
1d
l
, или, подставляя значение для
В
1
,
получим
Рассуждая аналогично, можно показать, что сила dF2, с которой магнитное поле тока I
2 действует на элемент d
l
первого проводника с током
I
1
,
направлена в противоположную сторону и по модулю равна
Сравнение выражений (111.3) и (111.4) показывает, что
dF1=dF2,
т. е. два параллельных тока одинакового направления притягиваются друг к другу
с силой
Если токи имеют противоположные направления,
то, используя правило левой руки, можно показать, что между ними действует
сила отталкивания,
определяемая формулой (111.5).
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
1) 1 — S, 2 — N 2) 1 — А, 2 — N 3) 1 — S, 2 — S 4) 1 — N, 2 — S
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному 2) 1 — южному; 2 — северному полюсу 3) и 1, и 2 — северному полюсу 4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90° 2) повернётся на 180° 3) повернётся на 90° или на 180° в зависимости от значения силы тока 4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо 2) влево 3) на нас из-за плоскости чертежа 4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный 2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный 3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный 4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
1) вправо → 2) влево ← 3) 4) вниз ↓
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
1) 2) вниз ↓ 3) направо → 4) налево ←
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
1) 2) вправо → 3) вниз ↓ 4) влево ←
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле. 2) Вокруг неподвижных зарядов существует электростатическое поле. 3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный. 4) Магнитное поле существует вокруг движущихся зарядов. 5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится. 2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо. 3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А. 4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз. 5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.
Источник
Сила Ампера
Опыты Ампера, как мы видели (см. Взаимодействие проводников с токами), показали, что два проводника притягиваются или отталкиваются в зависимости от направления тока в них. Это взаимодействие объясняется тем, что сила, которую испытывает каждый из проводников, обусловлена магнитным полем, создаваемым током другого проводника.
Вообще, магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.
Действительно, расположим проводник с током (см. рис. 1) так, чтобы только один прямолинейный участок его аb
оказался в сильном магнитном поле (между полюсами подковообразного магнита), а остальные части цепи находились в областях пространства, где магнитное поле слабое и его действием на эти части цепи можно пренебречь.
Опыт показывает, что в зависимости от направления тока и от расположения полюсов магнита проводник аb
движется вправо или влево, вверх или вниз. На проводники, расположенные вдоль направления магнитного поля, силы не действуют.
Рис. 1
Силу, действующую на проводник с током в магнитном поле, называют силой Ампера
. Направление силы Ампера можно определить, пользуясь
правилом левой руки
:
руку располагают так, чтобы нормальная к проводнику составляющая магнитной индукции входила в ладонь, четыре вытянутых пальца были направлены по току: тогда отогнутый на 90° большой палец укажет направление действующей на проводник силы Ампера
(рис. 1).
Ампер установил экспериментально, что модуль этой силы тем больше, чем сильнее магнитное поле \(~(F_A \sim B)\), чем больше сила тока \(~(F_A \sim I)\) в проводнике, чем больше длина проводника \(~(F_A \sim l)\) и зависит от ориентации проводника в магнитном поле:
\(~F_A = BI\Delta l \sin \alpha\)
где α — угол между направлением тока в проводнике и вектором магнитной индукции.
Эта формула является математическим выражением закона Ампера
. Ею можно пользоваться только тогда, когда длина проводника такова, что индукция во всех точках проводника может считаться одинаковой, но если магнитное поле однородное, то длина проводника может быть любой, но при этом проводник целиком должен находиться в поле. Интерес представляет вращение прямоугольной рамки с током в однородном магнитном поле.
Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, устройства для записи звука в магнитофонах, телефоны и микрофоны — во всех этих и во множестве других приборов и устройств используется взаимодействие токов, токов и магнитов и т.д.
6.5. Взаимодействие двух проводников с током
Применим закон Ампера для вычисления силы взаимодействия двух длинных прямолинейных проводников с токами I1 и I2, находящихся на расстоянии d друг от друга (рис. 6.26).
Рис. 6.26. Силовое взаимодействие прямолинейных токов: 1 — параллельные токи; 2 — антипараллельные токи
Видео 6.2. Взаимодействие двух параллельных проводников с током.
Проводник с током I1 создает кольцевое магнитное поле, величина которого в месте нахождения второго проводника равна
(6.23) |
Это поле направлено «от нас» ортогонально плоскости рисунка. Элемент второго проводника испытывает со стороны этого поля действие силы Ампера
(6.24) |
Подставляя (6.23) в (6.24), получим
(6.25) |
При параллельных токах сила F21 направлена к первому проводнику (притяжение), при антипараллельных — в обратную сторону (отталкивание).
Аналогично на элемент проводника 1 действует магнитное поле, создаваемое проводником с током I2 в точке пространства с элементом с силой F12. Рассуждая таким же образом, находим, что F12 = –F21, то есть в этом случае выполняется третий закон Ньютона.
Итак, сила взаимодействия двух прямолинейных бесконечно длинных параллельных проводников, рассчитанная на элемент длины проводника, пропорциональна произведению сил токов I1 и I2 протекающих в этих проводниках, и обратно пропорциональна расстоянию между ними. В электростатике по аналогичному закону взаимодействуют две длинные заряженные нити.
На рис. 6.27 представлен опыт, демонстрирующий притяжение параллельных токов и отталкивание антипараллельных. Для этого используются две алюминиевые ленты, подвешенные вертикально рядом друг с другом в слабо натянутом состоянии. При пропускании через них параллельных постоянных токов силой около 10 А ленты притягиваются. а при изменении направления одного из токов на противоположное — отталкиваются.
Рис. 6.27. Силовое взаимодействие длинных прямолинейных проводников с током
На основании формулы (6.25) устанавливается единица силы тока — ампер, являющаяся одной из основных единиц в СИ.
Ампер — это сила неизменяюшегося тока, который, протекая по двум длинным параллельным проводникам, расположенным в вакууме на расстоянии 1 м, вызывает между ними силу взаимодействия 2×10–7 Н на каждый метр длины провода. |
Пример. По двум тонким проводам, изогнутым в виде одинаковых колец радиусом R = 10 см, текут одинаковые токи I = 10 А в каждом. Плоскости колец параллельны, а центры лежат на ортогональной к ним прямой. Расстояние между центрами равно d = 1 мм. Найти силы взаимодействия колец.
Решение. В этой задаче не должно смущать, что мы знаем лишь закон взаимодействия длинных прямолинейных проводников. Поскольку расстояние между кольцами много меньше их радиуса, взаимодействующие элементы колец «не замечают» их кривизны. Поэтому сила взаимодействия дается выражением (6.25), куда вместо надо подставить длину окружности колец Получаем тогда
online.mephi.ru
Сила взаимодействия двух параллельных проводников с токами
Если взять два параллельных проводника с токами, расположенных на расстоянии а друг от друга, то вокруг каждого из них будет возникать собственное магнитное поле, причем проводник с током I1 окажется в магнитном поле проводника с током I2 и наоборот. В результате на проводники будут действовать электромагнитные силы F1 и F2, направление которых определяется по правилу левой руки.
Þ провода с токами одинакового направления притягиваются друг к другу с силой F.
Намагничивание ферромагнитных материалов
У ферромагнетиков . Они используются во всех электрических машинах. Если ввести ферромагнитный сердечник в катушку с током, то магнитное поле этой катушки увеличивается в сотки и в тысячи раз.
В ферромагнетиках имеются произвольно намагниченные области, которые называют доменами, или области спонтанного намагничивания. Магнитные поля их направлены хаотически, а результирующее магнитное поле равно «0».
Если такой ферромагнетик поместить во внешнее магнитное поле, например – в катушку с током, то домены будут разворачиваться в направлении внешнего магнитного поля, и результирующее поле резко возрастает. При этом говорят, что ферромагнетик намагнитился.
Процесс намагничивания ферромагнетика, помещенного в катушку с током, можно объяснить с помощью кривой намагничивания.
— кривая Столетова
Под действием внешнего поля, создаваемого током в катушке, домены начнут ориентироваться в направлении внешнего поля.
Кривую можно разбить на три участка:
1. Участок ОА – здесь магнитная индукция растет пропорционально к увеличению напряженности магнитного поля;
2. Участок АВ (колено кривой) – здесь рост магнитной индукции замедляется, т.к. большинство доменов уже сориентированы в направлении внешнего поля; пропорциональность между В и Н нарушается;
3. Участок ВС – здесь все домены сориентированы в направлении внешнего поля, рост магнитной индукции прекращается. Наступает магнитное насыщения.
Перемагничивание ферромагнетиков
Магнитный гистерезис
Если после достижения насыщения сердечника уменьшать ток в катушке (напряженность внешнего поля), то магнитная индукция также будет уменьшаться, т.к. часть доменов вернется в положение, которое они занимали до намагничивания. Однако другая часть останется сориентированной в направлении внешнего магнитного поля. |
В точке А внешнее магнитное поле равно нулю, а магнитная индукция не равна нулю. Это значение магнитной индукции называется остаточной магнитной индукцией.
Чтобы размагнитить сердечник необходимо приложить внешнее поле обратного направления и довести его до значения, определяемого отрезком ОВ, который называют коэрцитивной силой. Если продолжать увеличивать внешнее поле, то вновь получим насыщение.
Выводы:
1. Изменение магнитной индукции отстает (запаздывает) во времени от изменения напряженности внешнего поля.
2. Это запаздывание называется магнитным гистерезисом, а кривая намагничивания, характеризующая этот процесс, называется петлей гистерезиса.
3. Перемагничивание ферромагнетиков связано с затратой энергии, которая превращается в тепло. Потери энергии, связанные с процессом перемагничивания, называются потерями гистерезиса.
Величина энергии, затраченной на 1 цикл перемагничивания, пропорциональна площади петли гистерезиса.
При перемагничивании происходит изменение размеров тел (10-6). Это явление называется магнитострикцией.
Магнитожесткие и магнитомягкие материалы
Магнитомягкие – хорошо намагничиваются и хорошо размагничиваются. Площадь петли гистерезиса у них невелика. Коэрцитивная сила небольшая. Имеют большую магнитную проницаемость.
К ним относится электротехническая сталь, трансформаторная сталь, пермолон (железо с никелем). Они используются во всех электромагнитах. |
Магнитожесткие – плохо намагничиваются и плохо размагничиваются. Характеризуются большой площадью петли гистерезиса, большой коэрцитивной силой и остаточной магнитной индукцией.
К ним относятся углеродистые, вольфрамовые, кобальтовые и другие сплавы.
Магнитные цепи
Магнитной цепью называют устройство, в котором замыкается магнитный поток. Бывают разветвленные и неразветвленные.
Неразветвленная цепь | Разветвленная цепь |
Кроме того, магнитные цепи бывают однородные и неоднородные. Однородные цепи изготавливают из одного материала, они имеют одинаковую площадь сечения.
Закон Ома и закон Кирхгофа для магнитных цепей
Закон Ома: магнитное напряжение на любом участке т.к. .
Если , то , где — магнитное сопротивление. .
Магнитный поток прямо пропорционален магнитному напряжению и обратно пропорционален магнитному сопротивлению.
Закон Кирхгофа
1 правило: алгебраическая сумма магнитных токов в точке разветвления равна 0.
2 правило: основано на законе полного тока .
Алгебраическая сумма МДС равна алгебраической сумме магнитных напряжений на отдельных участках цепи.
.
Закон Ома и закон Кирхгофа для расчета магнитных цепей не используют, т.к. магнитное сопротивление, в отличие от электрического, зависит от величины магнитного напряжения.
Для расчета магнитных цепей используют закон полного тока.