Что такое пирометр?
Современное инженерное устройство для определения температуры любого предмета, основывающееся на инфракрасном датчике, называется пирометром. Также он известен под названиями термодетектора, даталоггера температуры, цифрового термометра или инфракрасного пистолета. В основе действия прибора заложен принцип определения температурного значения поверхности объекта по тепловому электромагнитному излучению его поверхности. Пирометр улавливает невидимое инфракрасное излучение, преобразует его в градусы, и полученный результат выводит на дисплее. Бесконтактный и быстрый метод исследования необходимых объектов позволяет специалистам избежать возможных травм.
Конструкция пирометра
Пирометр определяет температуру предмета, исследуя излучение его поверхности. Поэтому важнейшая часть прибора – детектор инфракрасного изучения. Детектор фиксирует интенсивность и спектр излучения.
Далее встроенная электроника сохраняет собранные данные и преобразует в градусы. Готовый результат высвечивается на экране. Сам пирометр обычно похож на пистолет.
Схема — конструкция пирометра
Обязательно есть ЖК-дисплей, небольшая панель управления и лазерная «указка», которую наводят на объект измерения. Корпус компактный.
Приобретая пирометр, обращают внимание на следующие технические характеристики:
- оптическое разрешение;
- температурный диапазон;
- разрешение;
- скорость измерения (обычно уходит меньше секунды).
В более дорогих моделях могут быть встроены:
- память для сохранения предыдущих замеров;
- звуковой сигнал, оповещающий о максимальной или минимальной температуре;
- USB-разъем.
Внешний вид и функционал пирометров будет отличаться в зависимости их назначения.
Область применения
Достаточно широкое применение нашлось для пирометров на тех производствах, где установлено большое количество нагревательных приборов. В области строительства и теплоэнергетики они используются для расчета теплопотерь конструкций, в том числе пирометр помогает выявить повреждения теплоизоляции.
В промышленности подобные приборы дают возможность подвергать анализу температуру всевозможных процессов дистанционно. Это бывает необходимо, например, в машиностроении, металлургии и в прочих отраслях промышленности.
Так, электрики проверяют уровень нагрева мест соединения проводов, а автослесари проверяют нагрев деталей машины. Ученым пирометры приходят на помощь во время осуществления различных исследований или опытов: так они определяют верность показателей температуры веществ и тел.
В быту люди применяют подобные устройства для определения температуры тела, воды, еды и др.
Пирометры спектрального отношения
Пирометры спектрального отношения определяют температуру объекта по отношению сигналов от двух приемников, работающих на разных длинах волн. Такой принцип измерения температуры позволяет избавиться от большинства недостатков, свойственных яркостным пирометрам. Зависимость сигнала от расстояния одинакова для обоих приемников пирометра спектрального отношения, поэтому на отношение сигналов она не влияет. Форма измеряемого объекта, запыленность и загазованность промежуточной среды одинаково влияют на сигналы с обоих приемников, оставляя неизменным их отношение. Пирометры спектрального отношения нечувствительны к боковым засветкам от крупноразмерных объектов, наличию небольших непрозрачных объектов в поле зрения пирометра, к наличию защитных стекол, например стекол смотровых окон в вакуумных камерах. Отношение сигналов по-прежнему остается неизменным. Да и отличие значения коэффициента излучения?измеряемого объекта от 1 чаще всего приводит к одинаковому уменьшению сигналов с обоих приемников. Поэтому отношение сигналов слабо зависит от излучательной способности ?объекта. Необходимо отметить два основных недостатка пирометров спектрального отношения. Во-первых, пирометр спектрального отношения сложнее радиационного, априори состоит из большего числа элементов, труднее калибруется. Поэтому стоимость таких пирометров больше, чем монохроматические. Во-вторых, излучательная способность измеряемого объекта все же? влияет на результаты измерений. Точнее, результат измерения пирометра спектрального отношения зависит не столько от величины излучательной способности или от ее изменения от объекта к объекту, сколько от спектральной зависимости коэффициента излучения от длины волны. С ростом длины волны спектральная излучательная способность снижается. Это приводит к тому, что сигнал длинноволнового приемника пирометра спектрального отношения оказывается заниженным по сравнению с коротковолновым. По этой причине показания пирометра спектрального отношения оказываются завышенными нередко более чем на 10%. В некоторых современных пирометрах спектрального отношения применяется специальная техника автоматической коррекции влияния изменения коэффициента излучения от длины волны. Для ряда материалов, в том числе высоколегированных сталей, была исследована зависимость коэффициента излучения от длины волны и подобрана универсальная корректирующая кривая, подходящая как для чистого железа и высоколегированных сталей, так и для ряда других металлов (никель, кобальт и т.п.). При этом для большинства этих металлов коррекция возможна до уровня, при котором погрешность измерений в диапазоне температур от 600 до 2400°С составляет всего 1–1,5% (для кобальта –до 2%). Указанный способ коррекции не только сохраняет все преимущества, которыми обладают пирометры спектрального отношения, но и избавляет пользователя от необходимости вводить в прибор корректирующий коэффициент, значение которого ему неизвестно, и заменяет механическую подстройку. Поэтому измерения температуры многих металлов выполняются без роста погрешности во всем диапазоне измеряемых температур. (Источник: А.Фрунзе « Пирометры спектрального отношения: преимущества, недостатки и пути их устранения», ФОТОНИКА 4/2009) Использование трех спектров также позволяет существенно снизить зависимость погрешности измерения от изменения величины коэффициента излучения и от изменения отношения ε1/ε2. (источник: Сергеев С.С. «Повышение точности измерения температуры с использованием новых моделей пирометров , сайт www.technoac.ru)
Типы и классификация
В зависимости от функционального признака, выделяют несколько классификаций пирометров.
По существенному методу, используемому в работе:
- Инфракрасные;
- Оптические.
Оптические пирометры подразделяются на:
- Яркостные;
- Цветовые, или мультиспектральные.
По образу прицеливания различают устройства с оптическим или лазерным прицелами.
По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.
По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).
Особенности работы пирометров
Расстояние между прибором и объектом, чья температура измеряется, не влияет на точность показаний. Однако прибор должен использоваться для диапазона, указанного изготовителем. Кроме того, чем больше расстояние между прибором и объектом, тем большая площадь зондировалась.
Некоторые пирометры имеют спусковые механизмы с двумя положениями. В первом положении спусковой крючок останавливается на полпути, и такое положение служит для сканирования поверхности или участка, где имеется неоднородность нагрева. В этом положении показания на дисплее меняются в зависимости от количества обнаруженных неоднородных участков. Это положение используется для определения приблизительной температуры объектов. Второе положение спускового механизма — это когда крючок полностью утоплен. Это положение используется для обнаружения объекта с наивысшей температурой, если объектов несколько. Когда крючок находится в этом положении, то показания на дисплее перестанут меняться, как только будет обнаружен объект с наивысшей температурой. Это положение называется «положение удержания наивысшего показания».
Другой особенностью пирометров является наличие переключателя коэффициента излучения. Переключатель коэффициента излучения компенсирует отраженное излучение, которое может повлиять на точность температурных показаний. Объекты отражают инфракрасное излучение, идущее от других объектов помимо собственного инфракрасного излучения. Однако отраженное инфракрасное излучение не является показателем истинной температуры объекта, а бесконтактный термометр не может отличить излучаемые волны от отраженных, пока вы не настроите переключатель коэффициента излучения на объект, чья температура измеряется. Большинство производителей пирометров поставляют в комплекте с прибором таблицы, где указаны коэффициенты излучения для наиболее часто измеряемых поверхностей.
Устройство и принцип действия
Основу структуры пирометра составляет детектор инфракрасного излучения. Данные преобразуются посредством встроенной электронной системы и отображаются на дисплее.
Типовой пирометр по форме напоминает пистолет с небольшим дисплеем. Компактная панель управления, наводка лазером и высокая точность при близком взаимодействии с объектом объясняют востребованность инструмента среди работников инженерных и технических сфер.
Основными рабочими элементами пирометра считают линзу, приёмник, а также дисплей, на который выводится результат измерения. Принцип действия пирометра следующий: от изучаемого объекта исходит инфракрасное излучение и посредством линзы оно фокусируется и отправляется в приемник (термобатарея, полупроводник, термопара).
Если используется термопара, в момент нагрева приемника меняется напряжение. Сопротивление — в случае использования полупроводников. Эти изменения преобразуются в показания температуры.
Для того, чтобы провести измерение, необходимо просто навести пирометр на объект, привести его в действие и отметить полученный результат. Используя специальную кнопку, вы можете регулировать формат измерения температуры — по шкале Цельсия или Фаренгейта.
Оптические пирометры. Устройство. Принцип действия.
Оптическим пирометром называют прибор, предназначенный для измерения яркостных температур светящихся тел в одном узком интервале длин волн видимого спектра – определении интенсивности красного монохроматического излучения. Прибор ручного действия, чувствительным элементом при этом служит глаз наблюдателя. Поэтому прибор пригоден только для периодических, временных наблюдений, например, при наладке топочного процесса. Наиболее распространен оптический пирометр с «исчезающей» нитью. Его принципиальная схема представлена на рис. 2.2. Изображение объекта с помощью объектива 2
проектируется в плоскости нити пирометрической лампы (эталонной). Наблюдатель, рассматривая с помощью окулярной линзы
6
изображение нити, видит его на фоне изображения нагретого тела.
Между пирометрической лампой и объективом по мере надобности вводят поглощающее стекло, а между лампочкой и глазом наблюдателя – светофильтр. Изменяя силу тока накала пирометрической лампы, добиваются совпадения её яркости с яркостью нагретого изделия. Тогда глаз наблюдателя перестанет различать нить на фоне изображения объекта и она, как говорится, «исчезнет».
Упрощенная схема оптического пирометра (типа ОППИР) показана на рис. 2.3, а
. Прибор состоит из оптической системы и миллиамперметра
1
со шкалой, градуированной в °С на разные пределы измерения яркостной температуры. Телескоп имеет объектив
2
и окуляр
5
, с помощью которых он наводится на объект измерения. Между объективом и пирометрической лампой размещается серый светофильтр
3,
а между лампой и окуляром – красный
6
.
Нить накала лампы видна в поле, наблюдаемом в телескоп. Лампа питается током от аккумуляторной батареи Б
. Ток накала нити регулируется реостатом
R
и измеряется показывающим прибором
Р и с. 2.2. Оптическая система яркостного визуального пирометра: 1
– визируемый объект;
2 –
объектив пирометра;
3 –
входная диафрагма;
4 –
поглощающее стекло;
5 –
нить пирометрической лампы;
6 –
линза окуляра; 7 – красный светофильтр;
8 –
выходная диафрагма
Для измерения температуры тела телескоп пирометра наводится на его излучающую поверхность при введенном реостате. Нить лампы при этом имеет небольшой накал и наблюдается в виде черной линии (дуги) на светлом фоне, как это показано на рис. 2.3, б
.
Р и с. 2.3. Упрощенная схема оптического пирометра ОППИР: а – схема пирометра; б , в , г , – вид нити, наблюдаемой в телескоп |
По мере уменьшения сопротивления реостата ток увеличивается, пирометрическая лампа разогревается и в момент совпадения яркостей нити и объекта наблюдения накаленная часть нити «исчезает» на фоне нагретого предмета (рис. 2.3, в
). В этот момент стрелка прибора устанавливается на делении шкалы, соответствующем измеряемой яркостной температуре. При дальнейшем увеличении накала лампы нить будет иметь вид светлой линии на темном фоне (рис. 2.3,
г
).
Зная зависимость для данного прибора яркостной температуры нити лампы от силы тока накала и измерив величину тока в момент исчезновения нити, определяют яркостную температуру объекта.
Определение яркостных температур с помощью спектральных формул Планка или Вина требует измерение яркостей тел на возможно более узком участке спектра. Существуют установки, снабженные сложной спектральной аппаратурой, позволяющие измерять яркости тел в очень узких спектральных интервалах. Применимость таких установок пока ограничивается только лабораторными условиями. Поэтому в оптических пирометрах широкого применения для монохроматизации света используют стеклянные светофильтры. Наиболее широко используется красное стекло КС-15 толщиной 2 мм.
На рис. 2.4 представлены:
– график пропускания такого стекла для различных длин волн (фактически пропускается только область с длиной волны λ>0,62 мкм);
– кривая относительной чувтвительности человеческого глаза (наибольшая эффективность зрения в центре, для λ= 0,5-0,6 мкм).
Р и с. 2.4. Кривые спектральной чувствительности человеческого глаза (1) и пропускания красного светофильтра (2) |
При визировании через красное стекло человеческий глаз воспринимает яркость объекта в сравнительно нешироком участке спектра (площадь abc).
Использование в оптических приборах красной области спектра позволяет понизить температурную границу применимости пирометра с исчезающей нитью. Красное стекло для облегчения наводки и фокусирования при малой яркости объекта может быть выведено из поля зрения, но при осуществлении уравнивания яркостей фильтр обязательно должен быть включен в оптическую схему прибора.
Изменение температуры самого красного светофильтра приводит к смещению границы его пропускания, что вызывает отклонение эффективной длины волны, на которой проводится измерение, и, соответственно, к появлению дополнительной погрешности.
Р и с. 2.5. Оптический прецизионный пирометр | Р и с. 2.6. Промышленный оптический пирометр |
На рис. 2.5 показан отечественный прецизионный оптический пирометр с исчезающей нитью типа ЭОП, который применяют как для эталонных работ по воспроизведению шкалы температур, так и для измерений температур при различных научных исследованиях. Прибор отличается большой светосилой (1:3) и благодаря этому может быть использован для измерения яркостных температур в красной области спектра начиная уже от 800°С. На рис. 2.6 представлен переносной промышленный оптический пирометр типа ОППИР. В устройствах этого типа используется встроенный измерительный прибор (вольтметр).
Технические характеристики
Пирометр обладает рядом параметров, которые характеризуют его функциональность. Выбор желаемой модели аппарата осуществляется по их значениям. Обратимся к основным из них.
Оптическое разрешение
Так называют показатель отношения диаметра пятна инструмента к расстоянию до предмета. Эта функция зависит от угла объектива устройства: чем он больше, тем значительную площадь он сможет охватить. Важнейшим фактором точности измерения является наложение пятна исключительно на материал поверхности. Если площадь превышена, измеренное значение скорее всего будет неточным.
СПРАВКА. У каждой модели пирометра разное оптическое разрешение. Разница между ними внушительная, например, от 2:1 до 600:1. Последнее соотношение характерно для профессиональных устройств. Как правило, используются они в тяжелой промышленности. Оптимальным показателем для бытовых и полупрофессиональных пирометров считается 10:1.
Рабочий диапазон
Диапазон действия прибора зависит от пирометрического датчика и, зачастую, варьируется от -30 °С до 360 °С. Так, для бытового использования подойдут почти все виды пирометров, если учесть максимальную температуру теплоносителя в системе отопления до 110 °С.
Рейтинг лазерных бесконтактных пирометров 2021 г
Чтобы понять, какой пирометр лучше купить для дома, стоит ознакомиться с обзором популярных моделей. Самыми востребованными у покупателей являются бесконтактные приборы с лазерным прицелом.
ADA TemPro 700 A00224
Относительно недорогой прибор из профессиональной категории подходит для выявления утечек тепла в доме. Поставляется в прочном корпусе с длинной рукоятью, устойчив к температурным перепадам и отличается высокой достоверностью результатов. Оснащен лазерным прицелом, позволяющим снимать точечные показания.
Пирометр ADA TemPro 700 можно купить за 3500 рублей
Testo 830-T1
Прибор подходит для измерения низких и высоких температур, причем работает не только с твердыми объектами, но и с жидкостями. Благодаря встроенному лазеру может снимать показания как с обширных зон, так и с небольших участков. Способен проводить замеры в диапазоне от — 30 до + 400 °С.
Цена Testo 830-T1 начинается от 4000 рублей
Bosch PTD 1
Универсальный прибор определяет температуру воздуха и поверхности, а также уровень влажности в помещении. Применяется в технических целях, помогает выявить утечки тепла. Проводит замеры от — 20 до 200 °С по поверхности, а в качестве комнатного термометра отображает показания от — 10 до 40 °С.
Надежный Bosch PTD 1 стоит в среднем 8000 рублей
Преимущества и недостатки
Как и любой другой прибор, пирометр обладает своими достоинствами и недостатками. Их наличие объясняется нюансами устройства и условиями применения.
Плюсы
- Мобильность, малогабаритность и весьма простая конструкция;
- Доступная низкая стоимость, обусловленная использованием минимального количества элементов в конструкции;
- Высокий уровень надежности;
- Достаточно широкий диапазон измерения.
Минусы
- Прямая зависимость показаний пирометра от излучаемой способности исследуемого предмета;
- Точность результатов измерений может быть ниже из-за особенности физического состояния поверхности объекта;
- Функция внесения поправки в показатели и установления погрешности предусмотрена только на самых новых приборах;
- Расстояние играет большую роль в точности измерения.
Наиболее популярные модели
ЭОП-66
Пирометр ЭОП-66 применяется при осуществлении научно-лабораторных исследований. Рассчитан он на измерение показателей поверхностей предметов при температуре от +900 до +10000°С,
Данная стационарная модель оснащена телескопом, который состоит из объектива и окулярного микроскопа. Двухлинзовый объектив располагает возможностью фокусировки на дистанции до 25,4 см, а его оптическое разрешение составляет 3:1. Обратите внимание: телескоп данного прибора фиксируется на основании и плавно передвигается в горизонтальной плоскости.
Кельвин ИКС 4-20
Это пирометр высокой точности, который обладает универсальным спектром определения температурных показателей: от -50 до +350 °С, весьма высокая скорость действия – 0,2 с. Применение инструмента предусмотрено в диапазоне 8-14 мкм.
Данный пирометр совмещает в себе возможности как мобильного, так и стационарного устройства. Это обусловлено компактными размерами (17х17х22 см) и наличием посадочного гнезда крепления объектива М12. Производитель гарантирует абсолютную водо- и пыленепроницаемость. Так, представленную модель пирометра возможно использовать в сложных производственных и строительно-промышленных отраслях.
Как правильно выбрать пирометр
Выбор устройства зависит в первую очередь от того, где и в каких целях оно будет использоваться. Некоторые модели лучше подходят для измерения температуры тела, другие предназначены для кулинарных целей.
Какой пирометр выбрать для дома
Самыми популярными в домашнем применении являются портативные приборы инфракрасного действия. Стационарное устройство с работой от сети в бытовых целях вряд ли пригодится, несмотря на высокую точность. При выборе пирометра для дома нужно учитывать:
- температурный диапазон, в быту будет достаточно разброса от — 50 до 380 °С;
- точность, погрешность прибора должна составлять не более 3 градусов;
- дальность действия — пирометры бывают контактными и бесконтактными, при использовании последних нужно учитывать оптическое разрешение, или требуемое расстояние до объекта;
- скорость, в быту удобно пользоваться приборами, обладающими откликом от 0,1 до 0,15 секунд.
Также при сравнении пирометров и выборе лучшего можно учесть дополнительные параметры. Некоторые модели могут измерять влажность. Полезно, если устройство способно сохранять результаты проведенных тестов во встроенной памяти.
Какой пирометр лучше выбрать для кондитера
При выборе пирометра для производства выпечки в цехе или дома можно купить бесконтактный прибор с диапазоном от — 50 до + 400 °С. Но лучше всего в кулинарии себя показывают модели с термопарой, ее подсоединяют к основному блоку и проводят замер контактным способом, чтобы получить наиболее точные результаты. Потом тест повторяют дистанционно для сравнения показателей, разница достигает обычно нескольких градусов.
В кулинарии лучшими остаются контактные пирометры с термопарой
Как выбрать медицинский пирометр
Медицинские приборы часто используют вместо обычных градусников. Выбирать устройство нужно по таким параметрам:
- контактное или бесконтактное действие, приспособления первого вида точнее, хотя вторые можно использовать для нескольких человек без дезинфекции;
- точность, для медицинского пирометра важна минимальная погрешность;
- функционал, полезно, если прибор оснащен звуковым сигналом и может сообщить об окончании измерения.
Важно! Большой температурный диапазон медицинскому устройству не требуется.
Как выбрать бесконтактный инфракрасный пирометр
Лучшие пирометры для измерения температуры бесконтактным методом очень популярны в быту. Такие устройства демонстрируют высокую точность и отличаются универсальностью. Измерять ими можно, в том числе, очень горячие, опасные или труднодоступные объекты.
При выборе необходимо смотреть на несколько характеристик:
- Диапазон. Если определять предстоит только температуру тела и слабое тепловое излучение поверхностей, можно выбрать прибор с небольшими значениями. Для кулинарного применения нужно покупать модель с широким диапазоном, причем желательно, чтобы даже очень большие температуры отстояли от максимально возможных показаний устройства.
- Спектральная чувствительность. Лучше выбирать прибор, работающий на коротких волнах, он подойдет для большинства бытовых измерений.
- Цветность. Обычно для домашнего применения хватает возможностей одноцветных пирометров. Двуцветные модели стоит выбирать, если предстоит оценивать температуру очень маленьких и горячих объектов, а также предметов, излучение которых частично перекрыто какими-либо загрязнениями и препятствиями.
При выборе домашнего пирометра, прежде всего, нужно оценить его тепловой диапазон
Лучшими считаются инфракрасные устройства, оснащенные лазерным прицелом. Они помогают измерить температуру объекта в конкретной выбранной точке и таким образом снизить вероятную погрешность.
Как выбрать пирометр для измерения температуры
Если прибор предстоит использовать вместо градусника, в первую очередь нужно определиться с его типом — контактный или бесконтактный. Устройства из последней категории советуют выбирать для маленьких детей. А вот взрослым и подросткам лучше пользоваться пирометрами контактного действия — лобными или ушными. Они дают более точные показания и практически не уступают ртутным термометрам.