Общая концепция
Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.
Принцип работы
Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.
Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.
Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.
Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.
Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.
По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.
Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.
А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.
Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.
Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.
Конденсатор и цепь постоянного тока
Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.
По мере зарядки, лампочка начинает тусклее светиться.
Лампочка затухает при полной зарядке.
Постоянный электрический ток не проходит через конденсатор только после его зарядки.
Цепь с переменным током
А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.
Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.
Поэтому, конденсатор пропускает переменный электрический ток.
Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.
§16. Превращение энергии в электрических и магнитных явлениях
16.4 Зарядка конденсатора от источника постоянной ЭДС.
Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теоретический интерес, как метод расчета энергии конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.
Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна ε
(Рис. 145). Полное электрическое соединение цепи (включающее и внутренне сопротивление источника) обозначим
R
. При замыкании ключа в цепи пойдет электрический ток, благодаря которому на зарядках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе \(~U_C = \frac{q}{C}\) и резисторе \(U_R = IR\) равна ЭДС источника \(\varepsilon = U_C + U_R\), что приводит к уравнению
\(~IR = \varepsilon — \frac{q}{C}\) . (1)
В этом уравнении заряд конденсатора и сила тока зависят от времени. Скорость изменения заряда конденсатора по определению равна силе тока в цепи \(~I = \frac{\Delta q}{\Delta t}\), что позволяет получить уравнение, описывающее изменение заряда конденсатора с течением времени
\(~R \frac{\Delta q}{\Delta t} = \varepsilon — \frac{q}{C}\) . (2)
Можно также получить уравнение, непосредственно описывающее изменение силы тока в цепи с течением времени. Для этого на основании уравнения (1) запишем уравнения для малых изменений входящих величин
\(~\Delta \varepsilon = \Delta (IR) + \Delta \left (\frac{q}{C} \right )\) .
Формально эту операцию можно описать следующим образом: уравнение (1) следует записать для двух моментов времени t
и (
t
+ Δ
t
), а затем из второго уравнения вычесть первое. Так как ЭДС источника постоянна, то ее изменение равно нулю Δ
ε
= 0, сопротивление цепи и емкость конденсатора постоянны, поэтому их можно вынести из под знака изменения Δ , поэтому полученное уравнение приобретает вид
\(~R \Delta I = — \frac{1}{C} \Delta q\) .
Наконец разделим его на промежуток времени, в течение которого произошли эти изменения, в результате получаем искомое уравнение (с учетом связи между силой тока и изменения заряда)
\(~\frac{\Delta I}{\Delta t} = -\frac{1}{RC} I\) . (3)
Математическая смысл этого уравнения указывает, что скорость уменьшения тока пропорциональна самой силе тока. Для однозначного решения этого уравнения необходимо задать начальное условие – значение силы тока в начальный момент времени I
0 = I(0).
С уравнениями такого типа мы познакомились в «математическом отступлении», поэтому здесь его анализ проведем кратко. В начальный момент времени, когда заряд конденсатора равен нулю, скорость возрастания заряда (то есть сила тока) максимальна и равна \(~I_0 = \Delta \left (\frac{\Delta q}{\Delta t} \right )_0 = \frac{\varepsilon}{R}\). Затем по мере накопления заряда сила тока будет уменьшаться, когда напряжение на конденсаторе станет равным ЭДС источника, заряд конденсатора достигнет максимального стационарного значения \(~\overline{q} = C\varepsilon\) и ток в цепи прекратится.
Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае
\(~\tau = \frac{\overline{q}}{I_0} = RC\) . (4)
Аналогичная оценка исчезновения тока, полученная на основании уравнения (3) приводит к этому же результату.
Строго говоря, время зарядки конденсатора, описываемой уравнением (2) равно бесконечности. Это парадокс можно исключить, если принять во внимание дискретность электрического заряда. Кроме того, заряд конденсатора, подключенного к батарее с течением времени случайным образом изменяется, флуктуирует, поэтому рассматриваемое уравнение описывает некоторые усредненные характеристики процесса. Тем не менее, полученная оценка времени RC широко применяется в приближенных расчетах, часто ее называют просто временем зарядки конденсатора
.
Рассмотрим теперь превращения различных форм энергии в данном процессе. Понятно, что причиной тока в цепи и как следствие зарядки конденсатора являются сторонние силы источника. На первый взгляд, энергетический баланс включает определенное противоречие: если источник сообщил конденсатору заряд q
, то сторонние силы совершили при этом работу
A
0 =
qε
, при этом энергия конденсатора стала равной \(~W = \frac{q^2}{2C} = \frac{q \varepsilon}{2}\) , что в два раза меньше работы совершенной источником. Противоречие исчезает, если принять во внимание, что в процессе зарядки по цепи течет электрический ток, поэтому на резисторе выделяется некоторое количество теплоты, то есть часть энергии источника переходит в тепловую. Мысленно разобьем время зарядки на малые промежутки Δ
t
i (
i
= 1,2,3…). Перепишем уравнение (1) в виде
\(~\varepsilon = IR + \frac{q}{C}\) , (5)
и умножим его на величину малой порции заряда, переносимого за малый промежуток времени Δt
i, Δ
q
i =
I
iΔ
t
i . В результате получим
\(~\varepsilon \Delta q_i = I_i R \Delta q_i + \frac{q_i}{C} \Delta q_i\) . (6)
Здесь обозначено q
i — заряд конденсатора перед перенесением рассматриваемой порции заряда. Каждый член полученного уравнения имеет явный физический смысл: \[~\varepsilon \Delta q_i = \delta A\] — работа сторонних сил по перемещению порции заряда Δ
q
i; \[~\frac{q_i}{C} \Delta q_i = \Delta W_C\] — увеличение энергии конденсатора при увеличении его заряда на Δ
q
i; \[~I_i R \Delta q_i = I^2_i R \Delta t_i = \delta Q\] — количество теплоты, выделившееся на резисторе, при протекании порции заряда Δ
q
i.
Таким образом, закон сохранения энергии, выражаемый уравнением баланса (6) для малого промежутка времени оказывается выполненным, следовательно, он будет выполнен и для всего процесса зарядки. Просуммируем выражение (5) по всем промежуткам времени зарядки, в результате чего получим: \[~\sum_i \varepsilon \Delta q_i = \varepsilon \overline{q} = A\] — полная работа сторонних сил по перенесению электрического заряда, равного стационарному заряду конденсатора; \[~\sum_i \frac{q_i}{C} \Delta q_i = \frac{\overline{q^2}}{2C} = \frac{\varepsilon \overline{q}}{2} = \frac{C \varepsilon^2}{2}\] — энергия заряженного конденсатора;
наконец, \(~\sum_i I_i R \Delta q_i = \sum_i I^2_i R \Delta t_i\) — количество выделившейся на резисторе теплоты.
Принимая во внимание уравнение (3) и формулы из «математического отступления», последнюю сумму можно выразить в виде
\(~Q = R \sum_i I^2_i \Delta t_i = R \frac{1}{2} I^2_0 \tau = R \frac{1}{2} \left ( \frac{\varepsilon}{R} \right )^2 RC = \frac{C \varepsilon^2}{2}\) . (6)
Эта сумма же может быть вычислена графически. Формула (1) задает зависимость напряжения на резисторе \(U_R = IR\) от заряда конденсатора. Эта зависимость линейна, ее график (Рис. 147) является отрезком прямой линии. За малый промежуток времени через резистор протечет малый заряд Δq
i, при этом выделится количество теплоты \(~\delta Q_i = I_i R \Delta q_i\), которое численно равно площади узкой полоски, выделенной на рисунке. Полное количество теплоты, выделившейся при прохождении всего заряда численно равно площади треугольника под графиком зависимости
U
R(
q
), то есть
\(~Q = \frac{1}{2} C \varepsilon \cdot \varepsilon = \frac{C \varepsilon^2}{2} = \frac{q^2_0}{2 C}\) . (7)
Таким образом, энергетический баланс полностью сходится и для всего процесса целиком: работа, совершенная источником равна сумме энергии конденсатора и количества выделившейся теплоты \(A = W_C + Q\). Схематически преобразование энергии в этом процессе показано на рис. 148.
Интересно заметить, что количество теплоты, выделяющееся при зарядке, не зависит о сопротивления цепи и в точности равно энергии конденсатора. То есть, половина энергии источника переходит в энергию электрического поля, а вторая в тепловую энергию, выделяющуюся в цепи: природа требует своеобразный пятидесятипроцентный налог в виде тепловых потерь, не зависимо от сопротивления цепи и емкости конденсатора[1].
Назначение и функции конденсаторов
Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:
- Фильтрует высокочастотные помехи;
- Уменьшает и сглаживает пульсации;
- Разделяет сигнал на постоянные и переменные составляющие;
- Накапливает энергию;
- Может использоваться как источник опорного напряжения;
- Создает резонанс с катушкой индуктивности для усиления сигнала.
Примеры использования
В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.
Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.
А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.
Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.
Из чего состоит конденсатор
Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.
намажем его сгущенкой
и сверху положим точно такой же блин
Должно выполняться условие: эти два блина не должны прикасаться друг с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед вами типичный “блинный конденсатор” :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки различный диэлектрик. В качестве диэлектрика может быть воздух, бумага, электролит, слюда, керамика, и так далее. К каждой металлической пластине подсоединены проводки – это выводы конденсатора.
Схематически все это выглядит примерно вот так.
Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.