Как рассчитать мощность трансформатора
Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.
Расчет обмотки преобразователя напряжения и его мощности
По сечению сердечника
Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.
Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.
Расчетная формула такой взаимосвязи:
Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где
- Sо — показатели площади окна сердечника;
- Sс — площадь поперечного сечения сердечника;
- Рг — габаритная мощность;
- Bс — магнитная индукция внутри сердечника;
- А — токовая плотность в проводниках на обмотках;
- F — показатели частоты переменного тока;
- Ко — коэффициент наполненности окна;
- Кс — коэффициент наполненности сердечника.
Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.
Самые распространенные разновидности трансформаторов производятся с применением Ш —образного и П — образного сердечников.
По нагрузке
При выборе трансформатора учитывается несколько основных параметров, представленных:
- категорией электрического снабжения;
- перегрузочной способностью;
- шкалой стандартных мощностей приборов;
- графиком нагрузочного распределения.
В настоящее время типовая мощность трансформатора стандартизирована.
Варианты трансформаторов
Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.
В системах электрического снабжения показатели трансформаторной мощности приборов должны позволить обеспечивать стабильное питание всех потребителей электроэнергии.
Расчет и выбор силового трансформатора по мощности и количеству
Расчетный срок службы трансформатора обеспечивается при соблюдений условий:
При проектировании, строительстве, пуске и эксплуатации эти условия никогда не выполняются (что и определяет ценологическаятеория).
Определение номинальной мощности трансформатора
Для правильного выбора номинальной мощности трансформатора (автотрансформатора) необходимо располагать суточным графиком нагрузки, из которого известна как максимальная, так и среднесуточная активная нагрузки данной подстанции, а также продолжительность максимума нагрузки.
График позволяет судить, соответствуют ли эксплуатационные условия загрузки теоретическому сроку службы (обычно 20…25 лет), определяемому заводом изготовителем.
Для относительного срока службы изоляции и (или) для относительного износа изоляции пользуются выражением, определяющим экспоненциальные зависимости от температуры. Относительный износ L показывает, во сколько раз износ изоляции при данной температуре больше или меньше износа при номинальной температуре. Износ изоляции за время оценивают по числу отжитых часов или суток: Н=Li.
В общем случае, когда температура изоляции не остается постоянной во времени, износ изоляции определяется интегралом:
В частности, среднесуточный износ изоляции:
Влияние температуры изоляции определяет, сколько часов с данной температурой может работать изоляция при условии, что ееизнос будет равен нормированному износу за сутки:
При температуре меньше 80°С износ изоляции ничтожен и им можно пренебречь. Температура охлаждающей среды, как правило, не равна номинальной температуре и, кроме того, изменяется во времени. В связи с этим для упрощения расчетов используют эквивалентную температуру охлаждающей среды, под которой понимают такую неизменную за расчетный период температуру, при которой износ изоляции трансформатора будет таким же, как и при изменяющейся температуре охлаждающей среды в тот же период.
Допускается принимать эквивалентную температуру за несколько месяцев или год равной среднемесячным температурам или определять эквивалентные температуры по специальным графикам зависимости эквивалентных месячных температур от среднемесячных и среднегодовых, эквивалентных летних (апрель—август), осенне-зимних (сентябрь—март) и годовых температур от среднегодовых.
Если при выборе номинальной мощности трансформатора на однотрансформаторной подстанции исходить из условия
(где Рмах — максимальная активная нагрузка пятого года эксплуатации; Рр — проектная расчетная мощность подстанции), то при графике с кратковременным пиком нагрузки (0,5… 1,0 ч) трансформатор будет длительное время работать с недогрузкой. При этом неизбежно завышение номинальной мощности трансформатора и, следовательно, завышение установленной мощности подстанции.
В ряде случаев выгоднее выбирать номинальную мощность трансформатора близкой к максимальной нагрузке достаточной продолжительности с полным использованием его перегрузочной способности с учетом систематических перегрузок в нормальном режиме.
Режимы работы трансформатора
Наиболее экономичной работа трансформатора по ежегодным издержкам и потерям будет в случае, когда в часы максимума он работает с перегрузкой (эксплуатация же стремится работать в режимах, когда в часы максимума загрузки данного трансформатора он не превышает свою номинальную мощность). В реальных условиях значение допустимой нагрузки выбирается в соответствии с графиком нагрузки и коэффициентом начальной нагрузки и зависит также от температуры окружающей среды, при которой работает трансформатор.
Коэффициент нагрузки, или коэффициент заполнения суточного графика нагрузки, практически всегда меньше единицы:
В зависимости от характера суточного графика нагрузки (коэффициента начальной загрузки и длительности максимума), эквивалентной температуры окружающей среды, постоянной времени трансформатора и вида его охлаждения согласно ГОСТ допускаются систематические перегрузки трансформаторов.
Перегрузки силовых трансформаторов
Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:
Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.
Для других значений tmax допустимый можно определить по кривым нагрузочной способности трансформатора.
Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %. Суммарная систематическая перегрузка трансформатора не должна превышать 150 %. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.
На трансформаторах допускается повышение напряжения сверх номинального: длительно — на 5 % при нагрузке не выше номинальной и на 10% при нагрузке не выше 0,25 номинальной; кратковременно (до 6 ч в сутки) — на 10 % при нагрузке не выше номинальной.
Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.
Расчет номинальной мощности трансформатора
Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения
СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.
Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт
Где:Р_2 – мощность на выходе трансформатора, нами задана 60 ватт ;
U _2 — напряжение на выходе трансформатора, нами задано 36 вольт ;
I _2 — ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1
, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 · √P_1.
Где:S — площадь в квадратных сантиметрах,P _1 — мощность первичной сети в ваттах.
S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².
По значению S определяется число витков w на один вольт по формуле:
w = 50/S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50/10,4 = 4,8 витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U_1 · w = 220 · 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,
округляем до 173 витка .
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I_1 = P_1/U_1 = 75/220 = 0,34 ампера .
Ток во вторичной обмотке трансформатора:
I_2 = P_2/U_2 = 60/36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода,
принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .
Для первичной обмотки диаметр провода будет:
d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .
Диаметр провода для вторичной обмотки:
d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 · d².
где : d — диаметр провода .
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.
Площадь поперечного сечения провода диаметром 1,1 мм. равна:
s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .
Округлим до 1,0 мм².
Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм . и площадью по0,5 мм² .
Или два провода:
— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».
Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.
Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.
Выбор мощности в сетях промышленных предприятий
Выбор мощности в сетях промышленных предприятий осуществляется по следующим принципам:
- единичная мощность трансформаторов выбирается в соответствии с рекомендациями удельной плотности расчетной нагрузки и полной расчетной нагрузки объекта;
- количество трансформаторов подстанции и их номинальную мощность определяют согласно указаниям по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий [3] (см. также раздел 4.3);
- выбор мощности трансформаторов должен осуществляться с учетом рекомендуемых коэффициентов загрузки (табл. 3.2) и допустимых аварийных перегрузок трансформаторов (табл. 3.3);
- при наличии типовых графиков нагрузки выбор следует вести в соответствии с ГОСТ 1420985 и с учетом компенсации реактивной мощности в сетях до 1 кВ;
Расчет
Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.
Трансформатор позволяет понизить напряжение до необходимых параметров.
Формула закона трансформации
Итак, закон трансформации определяется нижеследующей формулой:
U1/U2=n1/n2, где:
- U1 – напряжение на первичной обмотке,
- U2 – на вторичной,
- n1 – количество витков на первичной обмотке,
- n2 – на вторичной.
Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.
Советуем изучить Блок питания из энергосберегающих ламп
Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.
А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.
Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.
И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.
Площадь сердечника
Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:
S=1,15 * √P
В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.
Разновидности сердечников для трансформатора.
Количество витков в первичной обмотке
Здесь используется следующая формула:
n=50*U1/S, понятно, что U1 равно 220 В.
Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче
Здесь важно, чтобы количество обмоток уместилось
Сечение провода
И последняя четвертая формула касается сечения используемого медного провода в обмотках.
d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.
Расчетный диаметр необходимо также округлить до стандартной величины.
Итак, вот четыре формулы, по которым проводится подбор трансформатора тока
Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц
Обозначение трансформатора на схеме.
Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.
Определение номинальной мощности трансформатора
Для правильного выбора номинальной мощности трансформатора (автотрансформатора) необходимо располагать суточным графиком нагрузки, из которого известна как максимальная, так и среднесуточная активная нагрузки данной подстанции, а также продолжительность максимума нагрузки.
График позволяет судить, соответствуют ли эксплуатационные условия загрузки теоретическому сроку службы (обычно 20…25 лет), определяемому заводом изготовителем.
Для относительного срока службы изоляции и (или) для относительного износа изоляции пользуются выражением, определяющим экспоненциальные зависимости от температуры. Относительный износ L показывает, во сколько раз износ изоляции при данной температуре больше или меньше износа при номинальной температуре. Износ изоляции за время оценивают по числу отжитых часов или суток: Н=Li.
В общем случае, когда температура изоляции не остается постоянной во времени, износ изоляции определяется интегралом:
В частности, среднесуточный износ изоляции:
Влияние температуры изоляции определяет, сколько часов с данной температурой может работать изоляция при условии, что ееизнос будет равен нормированному износу за сутки:
При температуре меньше 80°С износ изоляции ничтожен и им можно пренебречь. Температура охлаждающей среды, как правило, не равна номинальной температуре и, кроме того, изменяется во времени. В связи с этим для упрощения расчетов используют эквивалентную температуру охлаждающей среды, под которой понимают такую неизменную за расчетный период температуру, при которой износ изоляции трансформатора будет таким же, как и при изменяющейся температуре охлаждающей среды в тот же период.
Допускается принимать эквивалентную температуру за несколько месяцев или год равной среднемесячным температурам или определять эквивалентные температуры по специальным графикам зависимости эквивалентных месячных температур от среднемесячных и среднегодовых, эквивалентных летних (апрель—август), осенне-зимних (сентябрь—март) и годовых температур от среднегодовых.
Если при выборе номинальной мощности трансформатора на однотрансформаторной подстанции исходить из условия
(где Рмах — максимальная активная нагрузка пятого года эксплуатации; Рр — проектная расчетная мощность подстанции), то при графике с кратковременным пиком нагрузки (0,5… 1,0 ч) трансформатор будет длительное время работать с недогрузкой. При этом неизбежно завышение номинальной мощности трансформатора и, следовательно, завышение установленной мощности подстанции.
В ряде случаев выгоднее выбирать номинальную мощность трансформатора близкой к максимальной нагрузке достаточной продолжительности с полным использованием его перегрузочной способности с учетом систематических перегрузок в нормальном режиме.
Примеры реальных расчетов
В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:
- напряжение сети – 220В;
- выходное напряжение – 14В;
- ток вторичной обмотки – 10А;
Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт
Габаритная мощность: P=1.25∙ 140=175 Вт.
Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см2
Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см2.
Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт
Для обмоток общее количество витков равняется:
- первичная обмотка n1=220∙3.6= 792 витка;
- вторичная обмотка n2=14∙3.6=50 витков.
Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.
Ближайшее стандартное значение – 2.4 мм.
Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.
Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.
Ближайшее стандартное значение имеет как раз такое значение.
Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.
Формула для расчета габаритной мощности трансформатора
Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.
ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с тороидальным магнитопроводом:
- напряжение первичной обмотки, U1 = 220 В;
- напряжение вторичной обмотки, U2 = 36 В;
- ток вторичной обмотки, l2 = 4 А;
- внешний диаметр сердечника, D = 110 мм;
- внутренний диаметр сердечника, d = 68 мм;
- высота сердечника, h = 60 мм.
Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна. Приступаем к расчёту трансформатора с магнитопроводом типа ОЛ70/110-60.
Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета – исходные данные для расчёта, поле жёлтого цвета – данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета – рассчитанное значение.
Примеры реальных расчетов
В качестве примера можно выбрать питающую подстанцию жилого района. Нагрузка подстанции является III категории, поэтому коэффициент загрузки допустимо выбирать из большего значения – 0.9-0.95.
Характер потребления тока бытового сектора зависит от времени суток и сезона, но с учетом высокого коэффициента загрузки допустимо учитывать среднее значение потребляемой мощности. Для повышения надежности работы в период максимального потребления рекомендуется использование маслонаполненных трансформаторов, которые отличаются большой перегрузочной способностью в течение длительного периода времени (30% перегрузки в течение 2-х часов).
Расчет мощности силовых трансформаторов
Трансформатор – элемент, использующийся для преобразования напряжений. Он входит в состав трансформаторной подстанции. Ее задача – передача электроэнергии от питающей линии (воздушной или кабельной) потребителям в объеме, достаточном для обеспечения всех режимов работы их электрооборудования.
Встраиваемая комплектная трансформаторная подстанция
В роли потребителей выступают жилые многоэтажные здания, поселки или деревни, заводы или отдельные их цеха. Подстанции, в зависимости от условий окружающей среды и экономических факторов, имеют различные конструкции: комплектные (в том числе киосковые, столбовые), встраиваемые, расположенные на открытом воздухе или в помещениях. Они могут располагаться в специально предназначенном для них здании или занимать отдельное помещение здания.
Выбор трансформаторов подразумевает определение его мощности и количества трансформаторов. От результатов зависят габариты и тип трансформаторных подстанций. При выборе учитываются факторы:
Критерий выбора | Определяемый параметр |
Категория электроснабжения | Число трансформаторов |
Перегрузочная способность | Мощность трансформаторов |
Шкала стандартных мощностей | |
График распределения нагрузок по времени суток и дням недели | |
Режимов работы их соображений экономии |
Выбор числа трансформаторов
Для трансформаторных подстанций используют схемы с одним или двумя трансформаторами.
Распределительные устройства, в состав которых входит более 2 трансформаторов, встречаются только на предприятиях или электрических станциях, где применение небольшого их числа не соответствует условиям бесперебойности электроснабжения, условиям эксплуатации.
Там экономически целесообразнее установить несколько трансформаторов сравнительно небольшой мощности, чем один или два мощных. Так проще проводить ремонт, дешевле обходится замена неисправного аппарата.
Устанавливают однотрансформаторные подстанции в случаях:
- электроснабжения потребителей III категории надежности;
- электроснабжения потребителей любых категорий, имеющих другие независимые линии питания и собственную автоматику резервирования, переключающую их на эти источники.
Но к однотрансформаторным подстанциям есть дополнительное требование. Потребители III категории по надежности электроснабжения, хоть и допускают питание от одного источника, но перерыв его ограничен временем в одни сутки.
Это обязывает иметь эксплуатирующую организацию складской резерв трансформаторов для замены в случае аварийной ситуации. Расположение и конструкция подстанции не должны затруднять эту замену.
При обслуживании группы однотрансформаторных подстанций мощности их трансформаторов, по возможности, выбираются одинаковыми, либо максимально сокращается количество вариантов мощностей. Это минимизирует количество оборудования, находящегося в резерве.
Киосковая подстанция
К потребителям третьей категории относятся:
- деревни и села;
- гаражные кооперативы;
- небольшие предприятия, остановка которых не приведет к массовому браку выпускаемой продукции, травмам, экологическому и экономическому ущербу, связанному с остановкой технологического процесса.
Схема питания потребителей III категории
Для потребителей, перерывы электроснабжения которых не допускаются или ограничиваются, применяют двухтрансформаторные подстанции.
Категория электроснабжения | Время возможного перерыва питания | Схема питания |
I | Невозможно | Два независимых источника с АВР и собственный генератор |
II | На время оперативного переключения питания | Два независимых источника |
III | 1 сутки | Один источник питания |
Расчёт параметров прибора
Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.
Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.
Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.
Определение мощности
Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:
P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50
Округление осуществляется в бо́льшую сторону. Результат 50 Вт.
Вычисление сечения сердечника
От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.
S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49
Расчёт количества витков
Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:
n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.
Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.
Токи в обмотках
Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.
В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.
Диаметр провода
Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:
d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.
Для намотки выходной обмотки потребуется провод с диаметром:
d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.
Выбор мощности трансформатора
В общем случае выбор мощности трансформаторов производится на основании следующих основных исходных данных: расчетной нагрузки объекта электроснабжения, продолжительности максимума нагрузки, темпов роста нагрузок, стоимости электроэнергии, нагрузочной способности трансформаторов и их экономичной загрузки.
Основным критерием при выборе единичной мощности так же, как и количества трансформаторов, является минимум приведенных затрат, полученный на основе техникоэкономического сравнения вариантов.
Ориентировочно выбор единичной мощности трансформаторов может выполняться по удельной плотности расчетной нагрузки (кВА/м2) и полной расчетной нагрузки объекта (кВА).
При удельной плотности нагрузки до 0,2 ВА/м2 и суммарной нагрузке до 3000 кВА целесообразно применять трансформаторы 400; 630; 1000 кВА — с вторичным напряжением 0,4/0,23 кВ. При удельной плотности и суммарной нагрузке выше указанных значений более экономичны трансформаторы мощностью 1600 и 2500 кВА.
Однако эти рекомендации не являются достаточно обоснованными вследствие быстроменяющихся цен на электрооборудование, и в частности, ТП.
В проектной практике трансформаторы ТП часто выбирают по расчетной нагрузке объекта и рекомендуемым коэффициентам.
Важное значение при выборе мощности трансформаторов является правильный учет их нагрузочной способности. Под нагрузочной способностью трансформатора понимается совокупность допустимых нагрузок, систематических и аварийных перегрузок из расчета теплового износа изоляции трансформатора. Если не учитывать нагрузочную способность трансформаторов, то можно необоснованно завысить при выборе их номинальную мощность, что экономически нецелесообразно.
На значительном большинстве подстанций нагрузка трансформаторов изменяется и в течение продолжительного времени остается ниже номинальной. Значительная часть трансформаторов выбирается с учетом послеаварийного режима и поэтому нормально они остаются длительное время недогруженными. Кроме того, силовые трансформаторы рассчитываются на работу при допустимой температуре окружающей среды, равной +40 °С. В действительности они работают в обычных условиях при температуре среды до 20… 30 °С.
Следовательно, силовой трансформатор в определенное время может быть перегружен с учетом рассмотренных выше обстоятельств без всякого ущерба для установленного ему срока службы (20.. .25 лет).
{xtypo_quote}На основании исследований различных режимов работы трансформаторов разработан ГОСТ 1420985, регламентирующий допустимые систематические нагрузки и аварийные перегрузки силовых масляных трансформаторов общего назначения мощностью до 100 мВА включительно с видами охлаждения М, Д, ДЦ и Ц с учетом температуры охлаждения среды.{/xtypo_quote}
Температура охлаждающей среды для определения допустимых систематических нагрузок принимается как эквивалентное значение для данной местности, вычисленное в соответствии с [24]. Для областных городов России, эквивалентная температура находится в пределах: 9,4…11 °С — годовая,3,4…6,7 °С — зимняя и 15,1…17,9 °С — летняя. При определении допустимых аварийных перегрузок температура охлаждающей среды принимается во время возникновения аварийной перегрузки.
Для определения систематических нагрузок и аварийных перегрузок в соответствии с необходимо также знать начальную нагрузку, предшествующую перегрузке, и продолжительность перегрузки.
Эти данные определяются по реальному исходному графику нагрузки (полной мощности или току), преобразованному в эквивалентный в тепловом отношении прямоугольный двух или многоступенчатый график.
В связи с необходимостью иметь реальный исходный график нагрузки расчет допустимых нагрузок и перегрузок в соответствии с может быть выполнен для действующих подстанций.
На стадии проектирования подстанций можно использовать типовые графики нагрузок или в соответствии с рекомендациями, также предлагаемыми в, выбирать мощность трансформаторов по условиям аварийных перегрузок согласно табл. 3.3.
Тогда для подстанций, на которых возможна аварийная перегрузка трансформаторов (двухтрансформаторные, однотрансформаторные с резервными связями по вторичной стороне), если известна расчетная нагрузка объекта Sp и коэффициент допустимой аварийной перегрузки Кзав (табл. 3.3), номинальная мощность трансформатора определяется какСледует также отметить, что нагрузка трансформатора свыше его номинальной мощности допускается только при исправной и полностью включенной системе охлаждения трансформатора.
Что касается типовых графиков, то на сегодняшний день они разработаны для ограниченного количества узлов нагрузок.
Частично типовые графики отдельных видов потребителей (коммунально бытовых и сельскохозяйственных) обработаны и для практического удобства сведены в табл. 3.4, 3.5 [25].
В этих таблицах в сокращенном виде соответственно указаны интервалы допустимых нагрузок и аварийных перегрузок трансформаторов с естественным масляным охлаждением, напряжением 10/0,4 кВ, мощностью до 630 кВА для некоторых видов потребителей с учетом климатических условий России.
По табл. 3.4 для необходимого вида нагрузки находится интервал минимальной и максимальной границы допустимой систематической нагрузки трансформатора (Samm…Samg), в котором находится величина расчетной нагрузки трансформатора Sp (для трансформаторов,определяет номинальную мощность трансформатора по допустимой нагрузке для нормального режима работы подстанции.
По табл. 3.5 для соответствующего вида нагрузки устанавливается номинальная мощность трансформатора по допустимой аварийной нагрузке исходя из условия: В зависимости от возможных режимов работы трансформатора выбор мощности его осуществляется по табл. 3.4 или по табл. 3.4, 3.5.
Поскольку выбор количества и мощности трансформаторов, в особенности потребительских подстанций 6—10/0,4—0,23 кВ, определяется чаще всего экономическим фактором, то существенным при этом является учет компенсации реактивной мощности в электрических сетях потребителя.
Компенсируя реактивную мощность в сетях до 1 кВ, можно уменьшить количество ТП 10/0,4, их номинальную мощность.
Особенно это существенно для промышленных потребителей, в сетях до 1 кВ которых приходится компенсировать значительные величины реактивных нагрузок. Существующая методика по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий предполагает выбор мощности компенсирующих устройств и одновременно — количества трансформаторов подстанций и их мощности.
Таким образом, с учетом вышеизложенного, а также сложностей непосредственных экономических расчетов, быстроменяющихся стоимостных показателей строительства подстанций и стоимости электроэнергии выбор мощности силовых трансформаторов при проектировании новых и реконструкции действующих потребительских подстанций 6—10/0,4—0,23 кВ может быть осуществлен следующим образом:
Плотность тока можно выбрать по таблице
Конструкция трансформатора | Плотность тока (а/мм2) при мощности трансформатора (Вт) | ||||
5-10 | 10-50 | 50-150 | 150-300 | 300-1000 | |
Однокаркасная | 3,0-4,0 | 2,5-3,0 | 2,0-2,5 | 1,7-2,0 | 1,4-1,7 |
Двухкаркасная | 3,5-4,0 | 2,7-3,5 | 2,4-2,7 | 2,0-2,5 | 1,7-2,3 |
Кольцевая | 4,5-5,0 | 4,0-4,5 | 3,5-4,5 | 3,0-3,5 | 2,5-3,0 |
Пример:
Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.
А плотность тока я выбрал – 2,5 А/ мм².
1,13√ (1,2 / 2,5) = 0,78 мм
У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.
На картинке два варианта конструкции каркаса: А – обычная, В– секционная.
- Количество витков в одном слое.
- Количество слоёв.
Ширина моего не секционированного каркаса 40мм.
Советуем изучить Токи Фуко — понятие и применение на практике
Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.
124 * 1,08 * 1,1 : 40 ≈ 3,68 слоя
1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.
Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.
Определяем толщину обмотки:
1,08 * 4 ≈ 4,5 мм
У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.
Ток катушки «II» вряд ли будет больше чем – 100мА.
1,13√ (0,1 / 2,5) = 0,23 мм
Диметр провода катушки «II» – 0,23мм.
Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.
Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.
Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.
Длина проводов будет равна:
L – длина провода,
p – периметр каркаса в середине намотки,
ω – количество витков,
1,2* – коэффициент.
Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.
Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.
Закрепить конец провода можно обычными нитками.
Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.
Если катушка разделена на секции для первичных и вторичных обмоток трансформатора, то тогда и вовсе можно обойтись без изоляционных прокладок.
Видео: Расчет сечения провода в силовом трансформаторе. Excel
Пример использования Excel в качестве универсального калькулятора для расчета диаметра провода в импульсном трансформаторе. Произведен расчет зависимости максимального тока от сечения проводника.
Расчет номинальной мощности трансформаторов
РАСЧЕТНАЯ ЧАСТЬ Читать далее: Определяем сечение кабеля для силового шкафа №1
2.2.2 Расчет номинальной мощности трансформаторов.
1) Так как в цехе преобладают приемники 2-й категории, то целесообразно выбрать 2 трансформатора для установки на цеховую трансформаторную подстанцию.
2) Номинальную мощность трансформаторов определяем по условию
Sр=S+S/, где S/=кВА
Sр=136,3+13,9=150,2 кВА
,
где βт – коэффициент загрузки трансформатора, для приемников второй категории принимается 0,7-0,8; Sр – расчетная максимальная мощность объекта.
Принимаем к установке трансформатор с номинальной мощностью 160 кВА.
3) Проверяем перегрузочную способность трансформатора в аварийном режиме по условию
kав.п. < 1,4 – коэффициент аварийной перегрузки.
Такая перегрузка трансформатора по условию допускается в течение 6 часов 5 суток.
4) По условию коэффициент загрузки трансформатора β питающего приемники 2 и 3-й категории надежности электроснабжения должен составлять 0,5 – 0,7
Условие по загрузке трансформатора выполняется.
2.2.4 Таким образом, принимаем к установке на цеховую трансформаторную подстанцию 2 трансформатора мощностью 160 кВА марки ТМЧ160/10.
2.3 Компенсация реактивной мощности
2.3.1 Основными потребителями реактивной мощности являются асинхронные двигатели и индукционные печи. Прохождение в электрических сетях реактивных токов обуславливает добавочные потери активной мощности в линиях, трансформаторах, генераторах электростанций, дополнительные потери напряжения, требует увеличение номинальной мощности или числа трансформаторов, снижает пропускную способность всей системы электроснабжения.
Меры по снижению реактивной мощности: естественная компенсация без применения специальных компенсирующих устройств; исскуственные меры с применением компенсирующих устройств.
К естественной компенсации относятся: упорядочение и автоматизация технологического процесса, ведущие к выравниванию графика нагрузки; создание рациональной схемы электроснабжения за счет уменьшения количества ступеней трансформации; замена малозагруженных трансформаторов и двигателей трансформаторами и двигателями меньшей мощности и их полная загрузка; применение синхронных двигателей вместо асинхронных; ограничение продолжительности холостого ход двигателей и сварочных аппаратов.
К техническим средствам компенсации реактивной мощности относятся: конденсаторные батареи, синхронные двигатели, вентильные статические источники реактивной мощности.
2.3.2 Выбор компенсирующих устройств
1) Определяем мощность компенсирующего устройства
где tgφk – находится в зависимости от cosφk=0,92, который необходимо получить после установки КУ, Рм – общая активная мощность системы электроснабжения;
Выбираем две комплектные конденсаторные установки КУ – УКН-0,38-75УЗ мощностью Qк.ст = 75 квар;
2) Определяем фактический tgφ
3) Определяем cosφ в зависимости от tgφ
cosφф = cos (arctg φф) = 0,97
Полученный cosφф удовлетворяет условию, поэтому выбранные компенсирующие устройства можно принять к установке.
2.4 Расчет распределительных линий
2.4.1 Проводники электросетей от проходящего по ним тока согласно закону Джоуля-Ленца нагреваются. Количество выделенной тепловой энергии пропорционально квадрату тока, сопротивлению и времени протекания тока Q = I2Rt. Нарастание температуры проводника происходит до тех пор, пока не наступит тепловое равновесие между теплом, выделяемым в проводнике с током и отдачей в окружающую среду.
Чрезмерно высокая температура нагрева проводника может привести к преждевременному износу изоляции, ухудшению контактных соединений и пожарной опасности. Поэтому устанавливаются предельнодопустимые значения температуры нагрева проводников в зависимости от марки и материала изоляции проводника в различных режимах.
Длительнопротекающий по проводнику ток, при котором устанавливается наибольшая длительно-допустимая температура нагрева проводника, называется предельно допустимым током по нагреву.
Значение допустимых длительных токовых нагрузок составляем для нормальных условий прокладки проводников: температура воздуха +25°С, температура земли +15°С и при условии, что в траншее уложен только один кабель. Если условие прокладки проводников отличается от идеальных, то допустимый ток нагрузки определяется с поправкой на температуру (kп1) и количество прокладываемых кабелей в одной траншее (kп2)
РАСЧЕТНАЯ ЧАСТЬ Читать далее: Определяем сечение кабеля для силового шкафа №1
Информация о работе «Электроснабжение электромеханического цеха»
Раздел: Разное Количество знаков с пробелами: 48321 Количество таблиц: 6 Количество изображений: 66
Похожие работы
Электроснабжение и электрооборудование электромеханического цеха металлургического завода
44932
16
6
… приемников электроэнергии, режимы их работы и размещении по территории цеха, номинальные токи и напряжения. Электромеханический цех (ЭМЦ) предназначен для подготовки заготовок из металла для электрических машин с последующей их обработкой различными способами. Он является одним из цехов металлургического завода, выплавляющего и обрабатывающего металл. ЭМЦ имеет станочное отделение, в котором …
Электроснабжение цеха промышленного предприятия
43169
6
1
… мероприятий по экономии электроэнергии потери должны быть сведены к минимуму. 1.2 Описание объекта электроснабжения Цеховые сети промышленных предприятий выполняют на напряжение до 1 кВ (наиболее распространенным является напряжение 380 В). На выбор схемы и конструктивное исполнение цехов сетей оказывают влияние такие факторы, как степень ответственности приемников электроэнергии, режимы их …
Проектирование системы электроснабжения цеха машиностроительного завода
67198
28
3
… оказывают влияние такие факторы, как степень ответственности электроприемников, режим их работы и размещение на территории цеха. Цеховые сети промышленного предприятия выполняется на напряжение до 1 кВ (наиболее распространенным является напряжение 0,38 кВ). При проектировании системы электроснабжения необходимо правильно установить характер среды, которая оказывает решающее влияние на степень …
Электроснабжение и электрооборудование куста скважины №145 Самотлорского месторождения ОАО «ТНК-ВР» с внедрением станции управления «Электон-М»
100267
23
4
… руб 218466,96 37751,19 180715,77 4 Себестоимость ремонтных работ руб 479704,63 ВЫВОДЫ И ЗАКЛЮЧЕНИЕ Дипломный проект выполнен на тему «Электроснабжение и электрооборудование ремонтного цеха №166 ОАО МК Витязь с разработкой схемы управления и защиты электро двигателя мостового крана». Подвод электрической энергии до цеха осуществляется от ГПП по воздушным линиям …
Типы магнитопроводов
Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.
По типу используемого металла сердечники разделяют на:
- Пластинчатые;
- Ленточные.
Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.
По типу магнитопровода различают сердечники:
- Броневые;
- Стержневые.
Каждый из перечисленных типов может различаться формой пластин или сегментов:
- Броневый;
- Ш образный;
- Кольцевой.
Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.
Типы сердечников
Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.
Как определить число витков обмотки трансформатора не разматывая катушку
При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.
Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.
Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.
Сайт для радиолюбителей
Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.
Первым делом необходимо рассчитать площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).
Для тороидального трансформатора:
- Sc = H * (D – d)/2
- S = π * d 2 / 4
Для Ш и П — образного сердечника:
Определим габаритную мощность нашего сердечника на частоте 50 Гц:
- η — КПД трансформатора,
- Sc — площадь поперечного сечения сердечника, см 2 ,
- So — площадь поперечного сечения окна, см 2 ,
- f — рабочая частота трансформатора, Гц,
- B — магнитная индукция, T,
- j — плотность тока в проводе обмоток, A/мм 2 ,
- Km — коэффициент заполнения окна сердечника медью,
- Kc — коэффициент заполнения сечения сердечника сталью.
При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.
Расчет понижающего трансформатора
Типы магнитопроводов силовых трансформаторов. Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.
Простой расчет понижающего трансформатора.
Магнитопроводы вида 1, 2 или 3 получают методом штамповки. Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.
Магнитопроводы бывают:
1, 4 – броневые, 2, 5 – стержневые, 6, 7 – кольцевые.
Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.
Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.
Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.
Трансформаторы с витыми кольцевыми магнитопроводами.
Реклама
YK001-USB тестер
Реклама
-_- **Распродажа** Отзывы: ***Дошло все целое.Внешний вид в точности как на фото.Плата отмыта от флюса хорошо.***
Как определить габаритную мощность трансформатора.
Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.
Чем дешевле трансформатор, тем ниже его относительная габаритная мощность. Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки. Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.
P = B * S² / 1,69
Где: P – мощность в Ваттах, B – индукция в Тесла, S – сечение в см², 1,69 – постоянный коэффициент.
Пример:
Сначала определяем сечение, для чего перемножаем размеры А и Б. S = 2,5 * 2,5 = 6,25 см²
Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.
P = 1,5 * 6,25² / 1,69 = 35 Ватт
Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:
S = ²√ (P * 1,69 / B)
Пример:
Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.
S = ²√ (50 * 1,69 / 1,3) = 8см²
О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.
Максимальные ориентировочные значения индукции.
КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.
В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.
В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт. Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт. Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.
Если вы найдете лампочку другой мощности, например на 40 ватт, нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.
СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.
Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт
Где: Р2 – мощность на выходе трансформатора, нами задана 60 ватт; U2 — напряжение на выходе трансформатора, нами задано 36 вольт; I2 — ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8. КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р1 = Р2 / η = 60 / 0,8 = 75 ватт.
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S.
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 • √P1
Где: S — площадь в квадратных сантиметрах, P1 — мощность первичной сети в ваттах.
S = 1,2 • √75 = 1,2 • 8,66 = 10,4 см².
По значению S определяется число витков w на один вольт по формуле:
w = 50 / S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50 / 10,4 = 4,8 витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U1 • w = 220 • 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U2 • w = 36 • 4,8 = 172.8 витков, округляем до 173 витка.
Реклама
Умная Светодиодная лампа Yee, с управлением через приложение Smart Home, E27, 10 Вт, 1700-6500 К, Отзывы: ***Отличная лампа с широкой регулировкой цветовой температуры света. Яркость вполне достаточная для освещения комнаты 10-12 кв.м.***
Реклама
Tecsun PL-606 портативное радио FM стерео/LW/SW/MW приемник DSP , Радио FM:64-108 МГц/LW: 153-513 кГц Отзывы: ***Прекрасный карманный радиоприёмник! Я очень довольна. Можно брать на природу или в дорогу. Места почти не занимает. Хороший звук. Ловит отлично.***
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I1 = P1 / U1 = 75 / 220 = 0,34 ампера.
Ток во вторичной обмотке трансформатора: I2 = P2 / U2 = 60 / 36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:
d = 0,8 √I
Для первичной обмотки диаметр провода будет:
d1 = 0,8 √I 1 = 0,8 √0,34 = 0,8 * 0,58 = 0,46 мм. Возьмем 0,5 мм.
Диаметр провода для вторичной обмотки:
d2 = 0,8 √I 2 = 0,8 √1,67 = 0,8 * 1,3 = 1,04 мм. Возьмем 1,1 мм
.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА
, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 • d²
где: d — диаметр провода.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.
Площадь поперечного сечения провода диаметром 1,1 мм равна:
s = 0,8 • d² = 0,8 • 1,1² = 0,8 • 1,21 = 0,97 мм²
Округлим до 1,0 мм².
Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм².
Или два провода:
— первый диаметром 1,0 мм. и площадью сечения 0,79 мм², — второй диаметром 0,5 мм. и площадью сечения 0,196 мм². что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются. Получается как бы один провод с суммарным поперечным сечением двух проводов.
И конечно можно воспользоватся программой для расчета
Как измерить диаметр провода.
Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.
Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.
Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.
Пример.
Я намотал 100 витков провода и получил длину набора –39 мм.
39 / 100 = 0,39 мм
По таблице определяю диметр провода по меди – 0,35мм.
Таблица данных обмоточных проводов.
Диаметр без изоляции, мм | Сечение меди, мм² | Сопротив-ление 1м при 20ºС, Ом | Допустимая нагрузка при плотности тока 2А/мм² | Диаметр с изоляцией, мм | Вес 100м с изоляцией, гр |
0,03 | 0,0007 | 24,704 | 0,0014 | 0,045 | 0,8 |
0,04 | 0,0013 | 13,92 | 0,0026 | 0,055 | 1,3 |
0,05 | 0,002 | 9,29 | 0,004 | 0,065 | 1,9 |
0,06 | 0,0028 | 6,44 | 0,0057 | 0,075 | 2,7 |
0,07 | 0,0039 | 4,73 | 0,0077 | 0,085 | 3,6 |
0,08 | 0,005 | 3,63 | 0,0101 | 0,095 | 4,7 |
0,09 | 0,0064 | 2,86 | 0,0127 | 0,105 | 5,9 |
0,1 | 0,0079 | 2,23 | 0,0157 | 0,12 | 7,3 |
0,11 | 0,0095 | 1,85 | 0,019 | 0,13 | 8,8 |
0,12 | 0,0113 | 1,55 | 0,0226 | 0,14 | 10,4 |
0,13 | 0,0133 | 1,32 | 0,0266 | 0,15 | 12,2 |
0,14 | 0,0154 | 1,14 | 0,0308 | 0,16 | 14,1 |
0,15 | 0,0177 | 0,99 | 0,0354 | 0,17 | 16,2 |
0,16 | 0,0201 | 0,873 | 0,0402 | 0,18 | 18,4 |
0,17 | 0,0227 | 0,773 | 0,0454 | 0,19 | 20,8 |
0,18 | 0,0255 | 0,688 | 0,051 | 0,2 | 23,3 |
0,19 | 0,0284 | 0,618 | 0,0568 | 0,21 | 25,9 |
0,2 | 0,0314 | 0,558 | 0,0628 | 0,225 | 28,7 |
0,21 | 0,0346 | 0,507 | 0,0692 | 0,235 | 31,6 |
0,23 | 0,0416 | 0,423 | 0,0832 | 0,255 | 37,8 |
0,25 | 0,0491 | 0,357 | 0,0982 | 0,275 | 44,6 |
0,27 | 0,0573 | 0,306 | 0,115 | 0,31 | 52,2 |
0,29 | 0,0661 | 0,2бб | 0,132 | 0,33 | 60,1 |
0,31 | 0,0755 | 0,233 | 0,151 | 0,35 | 68,9 |
0,33 | 0,0855 | 0,205 | 0,171 | 0,37 | 78 |
0,35 | 0,0962 | 0,182 | 0,192 | 0,39 | 87,6 |
0,38 | 0,1134 | 0,155 | 0,226 | 0,42 | 103 |
0,41 | 0,132 | 0,133 | 0,264 | 0,45 | 120 |
0,44 | 0,1521 | 0,115 | 0,304 | 0,49 | 138 |
0,47 | 0,1735 | 0,101 | 0,346 | 0,52 | 157 |
0,49 | 0,1885 | 0,0931 | 0,378 | 0,54 | 171 |
0,51 | 0,2043 | 0,0859 | 0,408 | 0,56 | 185 |
0,53 | 0,2206 | 0,0795 | 0,441 | 0,58 | 200 |
0,55 | 0,2376 | 0,0737 | 0,476 | 0,6 | 216 |
0,57 | 0,2552 | 0,0687 | 0,51 | 0,62 | 230 |
0,59 | 0,2734 | 0,0641 | 0,547 | 0,64 | 248 |
0,62 | 0,3019 | 0,058 | 0,604 | 0,67 | 273 |
0,64 | 0,3217 | 0,0545 | 0,644 | 0,69 | 291 |
0,67 | 0,3526 | 0,0497 | 0,705 | 0,72 | 319 |
0,69 | 0,3739 | 0,0469 | 0,748 | 0,74 | 338 |
0,72 | 0,4072 | 0,043 | 0,814 | 0,78 | 367 |
0,74 | 0,4301 | 0,0407 | 0,86 | 0,8 | 390 |
0,77 | 0,4657 | 0,0376 | 0,93 | 0,83 | 421 |
0,8 | 0,5027 | 0,0348 | 1,005 | 0,86 | 455 |
0,83 | 0,5411 | 0,0324 | 1,082 | 0,89 | 489 |
0.86 | 0,5809 | 0,0301 | 1,16 | 0,92 | 525 |
0,9 | 0,6362 | 0,0275 | 1,27 | 0,96 | 574 |
0,93 | 0,6793 | 0,0258 | 1,36 | 0,99 | 613 |
0,96 | 0,7238 | 0,0242 | 1,45 | 1,02 | 653 |
1 | 0,7854 | 0,0224 | 1,57 | 1,07 | 710 |
1,04 | 0,8495 | 0,0206 | 1,7 | 1,12 | 764 |
1,08 | 0,9161 | 0,0191 | 1,83 | 1,16 | 827 |
1,12 | 0,9852 | 0,0178 | 1,97 | 1,2 | 886 |
1,16 | 1,057 | 0,0166 | 2,114 | 1,24 | 953 |
1,2 | 1,131 | 0,0155 | 2,26 | 1,28 | 1020 |
1,25 | 1,227 | 0,0143 | 2,45 | 1,33 | 1110 |
1,3 | 1,327 | 0,0132 | 2,654 | 1,38 | 1190 |
1,35 | 1,431 | 0,0123 | 2,86 | 1,43 | 1290 |
1,4 | 1,539 | 0,0113 | 3,078 | 1,48 | 1390 |
1,45 | 1,651 | 0,0106 | 3,3 | 1,53 | 1490 |
1,5 | 1,767 | 0,0098 | 3,534 | 1,58 | 1590 |
1,56 | 1,911 | 0,0092 | 3,822 | 1,64 | 1720 |
1,62 | 2,061 | 0,0085 | 4,122 | 1,71 | 1850 |
1,68 | 2,217 | 0,0079 | 4,433 | 1,77 | 1990 |
1,74 | 2,378 | 0,0074 | 4,756 | 1,83 | 2140 |
1,81 | 2,573 | 0,0068 | 5,146 | 1,9 | 2310 |
1,88 | 2,777 | 0,0063 | 5,555 | 1,97 | 2490 |
1,95 | 2,987 | 0,0059 | 5,98 | 2,04 | 2680 |
2,02 | 3,205 | 0,0055 | 6,409 | 2,12 | 2890 |
2,1 | 3,464 | 0,0051 | 6,92 | 2,2 | 3110 |
2,26 | 4,012 | 0,0044 | 8,023 | 2,36 | 3620 |
2,44 | 4,676 | 0,0037 | 9,352 | 2,54 | 4220 |
Советуем изучить Элегазовые выключатели
Принцип работы устройства
Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки
. Каждый трансформатор собирается из следующих конструктивных элементов:
- сердечника;
- обмотки;
- каркаса для расположения обмоток;
- изолятора;
- дополнительных элементов, обеспечивающих жёсткость устройства.
В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля
. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.
Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку
. Таким образом, катушки связаны силовыми магнитными линиями.
Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС)
. Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.
От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.
Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии
. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.
Возможные схематические решения
Схем подключения вторичной обмотки трансформаторов, да и вообще всей электроники две:
- Звезда, которая используется для повышения мощности сети.
- Треугольник, который поддерживает постоянное напряжение в сети.
Вне зависимости от выбранной схемы, наиболее трудными считается изготовление и подключение небольших трансформаторов. Сюда относится и столь популярный в запросах поисковиков аtx. Это модель, которая устанавливается в системных блоках компьютеров, и изготовить ее самостоятельно крайне трудно.
В число трудностей при изготовлении маленьких трансформаторов стоит отнести сложность обмотки и изоляции, правильного подключения вторичной обмотки вне зависимости от выбранной схемы, а так же сложности с поиском сердечника. Короче говоря, проще и дешевле такой трансформатор купить. А вот как выбрать подходящую модель – это совсем другая история.
Формулы и измерение
Формулы для расчета индуктивности катушек довольно сложны и имеет различный вид для различных типов исполнения обмоток:
- линейный проводник;
- одновитковая катушка;
- плоская катушка;
- соленоидальная обмотка;
- тороидальная форма.
Наибольшие сложности возникают при расчетах многовитковых многослойных катушек, то есть тех, которые составляют обмотку трансформаторов.
Формулы для расчета индуктивности трансформатора основаны на расчетах соленоида:
L=µµN2S/l, где
µ0 – магнитная постоянная;
µ – магнитная проницаемость сердечника;
N – количество витков;
S – площадь одного витка;
l – длина обмотки.
Для измерения индуктивности существует несколько методик и приборов, созданных на их основе. В большинстве случаев измерение производится путем вычислений индуктивного сопротивления катушки при подаче образцового напряжения заданной частоты и измеренного значения тока через обмотку.
В специализированных приборах вычисления производятся автоматически, и пользователь только считывает показания шкалы прибора, выраженные в единицах индуктивности – Гн, мГн или мкГн.
Как выбрать ферритовый кольцевой сердечник?
Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в .
Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.
Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.
Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.
В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.
Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».
Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.
Как правильно мотать
Получив большинство технических данных, определив точное назначение и сферу использования будущего устройства, элементов обмоток катушки трансформатора, получив заводские шаблоны для выбранного вида обмотки приступают к практической реализации намоточных процессов.
Здесь большую роль будет играть опытность исполнения таких работ, наличие инструментов для такой работы, а также терпение.
Требуется использовать обязательный алгоритм действий в таком формате работ и приготовится к нескольким неудачам заблаговременно, если опыта проведения намотки витков катушки трансформатора ранее не было. В настоящее время как электронных, так и бумажных обучающих источников по всем правилам намотки обмотки трансформатора достаточно много для того, чтобы новичок через некоторое время в этих работах смог стать профессионалом.
Принцип действия аппарата
Принцип действия устройства основан на импульсной подачи энергии. Оборудование разделяется на две обширных группы: с сигмамодуляцией и импульсной модуляцией. Первые отличаются тем, что они изменяются соотношения продолжительности импульсов с их частотой. Момент выбирается, когда закончится подача энергии и включится транзистор.
Продолжительность функционирования зависит от характеристик выходного напряжения. Если говорить о вариантах с широтно-импульсной модуляцией, то тут частота идентичная и постоянная. Напряжение — характеристика стабильная, определяется оно длительностью импульса к периоду его прохождения.
Также принцип работы определяется тем непрерывный или прерывистый поток магнитного поля установлен. Нельзя сказать, что какой-то из них лучше, просто это определяет вариативность использования.
Любой одноходовый импульсный трансформатор имеет как достоинства, так и недостатки. Среди преимуществ использования выделяют:
- минимальный вес и размеры, если сравнивать с другим видом оборудования, предназначенным для работы с частотой около 50 Гц;
- не нужна защита от короткого замыкания, так как оно произойти теоретически не может;
- сокращение использования меди, в результате чего трансформатор имеет минимальную цену;
- изменение показателей в зависимости от характеристик питающей цепи;
- нет помех, передача туда и обратно исключена из-за конструктивных особенностей.
Но, как и любое другое оборудование, обратноходовый импульсный трансформатор имеет и недостатки. К их числу относятся:
- максимальный запас энергии составляет 200 Вт — показатель ограничен работой дросселя;
- нет возможности работы на холостом ходу, то есть нагрузка подключается в обязательном порядке;
- возникают электромагнитные помехи и передаются, так как они есть в нагрузке, а она нужна.
Шкала стандартных мощностей силовых трансформаторов
На территории России используется единая шкала стандартных мощностей. Она разделяется на два шага: 1,35 и 1,6, каждый включает ряд величин, представленных в таблице ниже.
Шаг 1,35. В кВА | Шаг 1,6. В кВА |
100 | 100 |
135 | 160 |
180 | 250 |
240 | 400 |
320 | 630 |
420 | 1000 |
560 | 1600 |
В настоящее время заводы выпускают трансформаторные подстанции (ТП), применяя мощности шага 1,6. Шкала шага 1,35 уже не используется на производствах, но старые установки, выпущенные в советское время, проектировались именно по этой шкале. При этом, исследования определили старые приборы как более выгодные, поскольку они могут работать в полную силу, в отличие от современных агрегатов.
При выборе разных видов приборов, учитывается, что они должны быть максимально близкими по наибольшему показателю нагрузки в обычном режиме и предельному напряжению в аварийном.
При выборе трансформаторов для промышленных производств важно учитывать их количество для рационального распределения электроэнергии и их типовые мощности при определенной номинальной нагрузке.