Силы сопротивления движению. определение дополнительного сопротивления движению

Коэффициент лобового сопротивления c d примеры

Общее

В общем, не является абсолютной константой для данной формы тела. Это зависит от скорости воздушного потока (или, в более общем смысле, от числа Рейнольдса ). Например, гладкая сфера имеет значение a, которое изменяется от высоких значений для ламинарного потока до 0,47 для турбулентного потока . Хотя коэффициент сопротивления уменьшается с увеличением , сила сопротивления увеличивается. cd{\ displaystyle c _ {\ mathrm {d}}} ре{\ displaystyle Re}cd{\ displaystyle c _ {\ mathrm {d}}}ре{\ displaystyle Re}

c
d
Пункт
0,001Ламинарная плоская пластина, параллельная потоку ( ) ре<106{\ displaystyle Re <10 ^ {6}}
0,005Турбулентная плоская пластина, параллельная потоку ( ) ре>106{\ displaystyle Re> 10 ^ {6}}
0,0512, 2015
0,07Нуна 3
0,075Pac-car
0,076Milan SL (один из самых быстрых практичных веломобилей )
0,1Гладкая сфера ( ) резнак равно106{\ displaystyle Re = 10 ^ {6}}
0,47Гладкая сфера ( ) резнак равно105{\ displaystyle Re = 10 ^ {5}}
0,81Треугольная трапеция (45 °)
0,9-1,7Трапеция с треугольным основанием (45 °)
0,14Fiat Turbina 1954 г.
0,15Schlörwagen 1939 г.
0,18Mercedes-Benz T80 1939 года
0,186-0,189Volkswagen XL1 2014 года
0,19Alfa Romeo BAT 7 1954 г.
0,19General Motors EV1 1996 г.
0,212Татра 77А 1935
0,23Tesla Model 3 , Audi A4 B9 (2016)
0,232016
0,24Тесла Модель S
0,24Hyundai Ioniq
0,24Toyota Prius (4-е поколение)
0,25Toyota Prius (3-е поколение)
0,26BMW i8
0,26Nissan GT-R (2011-2014)
0,26Toyota Prius (2-е поколение)
0,27BMW E39 5 серии (1995-2003, Германия)
0,27Mercedes-Benz CLS-Класс Тип C257
0,27Nissan GT-R (2007-2010)
0,27Chrysler 200 (2015-2017)
0,28Alfa Romeo Giulietta Sprint Speciale 1959 года
0,281969 Dodge Charger Daytona и 1970 Plymouth Superbird
0,281986 седан Опель Омега .
0,28Mercedes-Benz CLA-Класс Тип C 117.
0,29Mazda3 (2007), Nissan 350Z (модели Track и Grand Touring)
0,295Пуля (не оживает , на дозвуковой скорости)
0,3Saab 92 (1949), Audi 100 C3 (1982), Fiat 500L (2012)
0,31Maserati Ghibli (2013), 0.29 после рестайлинга
0,324Ford Focus Mk2 / 2.5 (2004-2011, Европа)
0,33BMW E30 3 серии (1984-1993, Германия)
0,34Ford Sierra (1982-1993), Saab 9000 (1984-1998)
0,35Maserati Quattroporte V (M139, 2003–2012 гг.)
0,36Citroen CX (1974-1991, Франция), Tesla Semi (2017, США)
0,37Ford Transit Custom Mk8 (2013, Турция)
0,48Шероховатая сфера ( ), Volkswagen Beetleрезнак равно106{\ displaystyle Re = 10 ^ {6}}
0,58(1997-2005)
0,75Типовая модель ракеты
1.0Кофейный фильтр, лицевой стороной вверх
1.0шоссейный велосипед плюс велосипедист, туристическое положение
1.0–1.1Лыжник
1,0–1,3Провода и кабели
1,0–1,3Взрослый человек (вертикальное положение)
1.1-1.3Лыжный джемпер
1.2Усэйн Болт
1,28Плоская пластина, перпендикулярная потоку (3D)
1,3–1,5Эмпайр Стейт Билдинг
1.4Автомобиль Формулы-1
1,8–2,0Эйфелева башня
1,98–2,05Длинная плоская пластина, перпендикулярная потоку (2D)

Зависимость электрического сопротивления от сечения, длины и материала проводника

Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.

Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника

Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.

Из этого следует, что сопротивление медного проводника меньше , чем стального, а сопротивление стального проводника меньше , чем никелинового.

Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.

Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.

Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм 2 при температуре +20 С°.

Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.

Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм 2 /м, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,0175 Ом.

Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.

Удельные сопротивления материалов, наиболее часто применяемых в электротехнике

МатериалУдельное сопротивление, Ом*мм 2 /м
Серебро0,016
Медь0,0175
Алюминий0,0295
Железо0,09-0,11
Сталь0,125-0,146
Свинец0,218-0,222
Константан0,4-0,51
Манганин0,4-0,52
Никелин0,43
Вольфрам0,503
Нихром1,02-1,12
Фехраль1,2
Уголь10-60

Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).

Разберем теперь, как влияют размеры проводника , т. е. длина и поперечное сечение, на величину его сопротивления.

Определение коэффициента сопротивления (трения) скольжения

Момент силы — это… физический смысл, условие равновесия тел, пример задачи
ОПРЕДЕЛЕНИЕ

Коэффициентом сопротивления (трения)

называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Обычно данный коэффициент обозначают греческой буквой . В таком случае коэффициент трения определим как:

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Расчет сил сопротивления

С целью определения сил сопротивления потребуется применение третьего закона Ньютона. Такая величина, как сила сопротивления, будет численно равной силе, которую потребуется приложить с целью равномерного движения предмета по горизонтальной ровной поверхности. Это становится возможным с помощью динамометра.

Готовые работы на аналогичную тему

  • Курсовая работа Силы сопротивления 410 руб.
  • Реферат Силы сопротивления 230 руб.
  • Контрольная работа Силы сопротивления 190 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Таким образом, искомая величина оказывается прямо пропорциональной массе тела. Стоит при этом учитывать во внимание, что для более точного подсчета потребуется выбрать $u$ коэффициент, зависимый от материала изготовления опоры. Также принимается во внимание материал изготовления самого предмета исследования. При расчете применяется постоянная $g$, чье значение 9,8 $м/с^2$.

В условиях движения тела на высоте, на него влияет сила трения воздуха, зависимая от скорости перемещения предмета. Искомую величину определяют на основании такой формулы (подходящей исключительно для тел с передвижением с небольшой скоростью):

$F = va$, где:

  • $v$ – скорость движения предмета,
  • $a$ – коэффициент сопротивления среды.

Измерение

Как рассчитать лошадиные силы по объему двигателя

Существует как минимум две популярные модели для расчета сопротивления качению.

  1. «Коэффициент сопротивления качению (RRC). Значение силы сопротивления качению, деленное на нагрузку на колесо. Общество автомобильных инженеров (SAE) разработало методы испытаний для измерения RRC шин. Эти испытания ( SAE J1269 и SAE J2452 ) являются обычно выполняется на новых шинах. При измерении с использованием этих стандартных методов испытаний, для большинства новых легковых шин значения RRC варьируются от 0,007 до 0,014 ». В случае велосипедных шин достигаются значения от 0,0025 до 0,005. Эти коэффициенты измеряются на роликах, измерителями мощности на дорожном покрытии или в ходе испытаний на выбег . В последних двух случаях необходимо вычесть влияние сопротивления воздуха или провести испытания на очень низких скоростях.
  2. Коэффициент сопротивление качению б
    , который имеет размерность длины , составляет приблизительно (из — за малым углом приближения в ) равен значение раскатывающего раза силы сопротивления радиус колеса делит на нагрузке колеса.потому что⁡(θ)знак равно1{\ Displaystyle \ соз (\ тета) = 1}
  3. ISO 18164: 2005 используется для испытания сопротивления качению в Европе.

Результаты этих тестов могут быть трудными для широкой публики, поскольку производители предпочитают рекламировать «комфорт» и «производительность».

Цепи переменного тока

Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.

Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.

При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).

Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.

Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:

  1. Измеряется частота переменного тока (как правило, 50 Гц).
  2. Умножается на 6,283.

Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).

Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:

  1. Длины проводника.
  2. Площади сечения — S.
  3. Температуры.
  4. Типа материала.
  5. Емкости.
  6. Индуктивности.
  7. Частоты.

Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z. Меняется и закон для полной цепи.

Закон стокса

Подробно про фильтры нулевого сопротивления

Математическое изучение движения тел в вязкой жидкости сопряжено со столь большими трудностями, что до сих пор такому изучению оказались доступными только предельные случаи, а именно, случай очень большой вязкости, т.е. очень малого числа Рейнольдса, и случай очень малой вязкости, т.е. очень большого числа Рейнольдса. Если в потоке преобладают силы вязкости, что имеет место, с одной стороны, в очень вязких жидкостях (например, в моторном масле), а с другой стороны, также в обычных жидкостях при весьма малых размерах, определяющих движение, то можно пренебречь силами инерции по сравнению с силами вязкости и считать, что перепад давления и силы трения, приложенные к любой части жидкости, уравновешивают друг друга.

Сопротивление цилиндрического проводника

Случай резко выраженного поверхностного эффекта.

Сопротивление цилиндрического провода при переменном токе отличается от его сопротивления при постоянном токе. Это отличие обусловлено поверхностным эффектом. При одной и той же частоте поверхностный эффект будет проявляться тем сильнее, чем больше диаметр провода по сравнению с Δ0.

Рассмотрим сначала случай сильно выраженного поверхностного эффекта (толстый проводник). Пусть по цилиндрическому проводу радиуса а

распространяется бегущая волна тока. Выделим достаточно малый элемент провода длины
l
,в пределах которого можно считать, что амплитуда тока не меняется. Предположим, что радиус провода
а
значительно превышает глубину проникновения (
a
>> Δ0). В этом случае при определении сопротивления провода можно использовать результаты предыдущего раздела.

Комплексное сопротивление провода на единицу длины определяется формулой:

(3.65)

где – комплексная амплитуда тока в проводе, а

комплексная амплитуда напряжения на концах отрезка провода длины
l.
Совместим ось Z цилиндрической системы координат с осью провода. Тогда
,
(3.66)

Подставляя выражения (3.66) в (3.65) и учитывая соотношения (3.61) и (3.62), получаем:

(3.67)

Сопротивление Z можно выразить через активное сопротивление R

и внутреннюю индуктивность
L
i приходящиеся на единицу длины провода: . Отделяя в (3.67) действительную и мнимую части, находим
R
и
L
:

(3.68)

Из сравнения значений R

и
L
, при переменном токе с их значениями и при постоянном токе следует, что отношение
R/R
0 с ростом частоты увеличивается, а отношение
L
i/
L
i 0, наоборот, уменьшается.

Полученные формулы можно использовать только при условии a>>Δ0. Если это условие не вы-полняется, то для того чтобы определить сопротивление провода, нужно найти его внутреннее поле.

Сопротивление провода с учетом его внутреннего поля.

Введем цилиндрическую систему координат ось Z которой совпадает с осью рассматриваемого уединенного провода. Комплексную амплитуду плотности тока в проводе можно представить в виде , где
b –
комплексная постоянная, характеризующая распространение волны тока (электромагнитной волны) вдоль провода. Отметим, что постоянная
b
связана с постоянной распространения γ, используемой в электротехнике, соотношением ехр(- ibz) = ехр(-γz) или b = -iγ. Известно, что постоянная
b
по абсолютной величине близка к волновому числу , соответствующему среде, окружающей провод. Комплексная амплитуда продольной составляющей напряженности электрического поля внутри провода записывается аналогично: причем имеет место соотношение . Функция удовлетворяет уравнению Гельмгольца (2.31 из юниты), в котором нужно заменить
k
на . Учитывая, что приходим к уравнению: где . Так как , а
,
то и в уравнении для можно считать, что Записывая оператор в цилиндрической системе координат и учитывая, что не зависит от угла φ, приходим к дифференциальному уравнению для функции :

Это уравнение Бесселя

. Его общее решение имеет вид:

(3.69)

где и – соответственно функции Бесселя и Неймана нулевого порядка, а А

и
В
– произвольные постоянные. При
r
= 0 (т.е. на оси провода) функция является ограниченной, а обращается в бесконечность. Поэтому в выражение (3.69) нужно положить
В
= 0. Для сокращения формул введем обозначение .Выражая постоянную
А
через и учитывая, что при функция , получаем:

(3.70)

Комплексное погонное сопротивление уединенного провода вычисляется по формуле (3.65). В комплексных амплитудах напряжения и тока можно выделить экспоненциальный множитель: При этом формула (3.65) принимает вид:

(3.71)

Вычисляя и в соответствии с определениями этих величин, находим:

Подставляя найденные значения и в (3.71), получаем:

(3.72)

Это выражение справедливо при любом значении частоты или, что, по существу, то же самое, при любых соотношениях между радиусом а

и глубиной проникновения Δ°.

Убедимся вначале, что выражение (3.72) при a>>Δ° переходит в формулу (3.67). В хорошо проводящей среде (см. раздел 2.1.4) параметр Поэтому при a>>Δ° выполняется неравенство . Следовательно, входящие в (3.72) функции Бесселя можно заменить первыми членами их асимптотических разложений при больших значениях аргумента:

Подставляя это выражение в (3.72), приходим к формуле (3.67).

Вслучае тонких проводов, для которых a<<�Δ°, модуль аргумента функций Бесселя Используя асимптотическое представление функций Бесселя для малых значений аргумента

находим:

(3.73)

Множитель 1/(πа2σ2) в формуле (3.73) совпадает с сопротивлением проводника при постоянном токе. Так как по предположению a<<�Δ°, то поправочный коэффициент будет мал по сравнению с единицей. Как и следовало ожидать, поверхностный эффект в этом случае проявляется слабо.

Отметим, что полученные в данном разделе формулы для погонного сопротивления провода верны в случае уединенного провода. Если линия состоит из нескольких параллельных проводов, то распределение тока по сечению провода нельзя считать осесимметричным. Учет несимметричного распределения тока приводит к увеличению погонного активного сопротивления. Однако если расстояние между проводами значительно больше диаметра провода, то поправка получается небольшой и ею можно пренебречь.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора

. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Нахождение параметра

Найти сопротивление — значит, рассчитать потери тока. Существует 2 принципиально разных подхода к расчёту. В одном случае он ведётся для электрической цепи, а в другой — для материала. Если во втором случае всё предельно понятно, используется одна формула, в которую подставляют размеры тела и табличное значение удельной проводимости, то для электрической цепи не так всё просто.

В цепи может встречаться 3 вида соединения элементов:

  1. Параллельное. При таком соединении цепь разветвляется, то есть появляются ветви, по которым течёт ток. Ветви могут пересекаться между собой.
  2. Последовательное. Схема соединения представляет единую цепь, в которой нет разветвлений.
  3. Смешанное. Состоит из комбинированного соединения, включающего комбинации из параллельного и последовательного подключения.

Вычисление сопротивления для каждого типа соединения имеет особенности. При последовательном включении общее значение определяется путём простого складывания: R = r1 + r2 +…+ rn. При параллельном же соединении полное сопротивление цепи будет меньше самого малого из сопротивлений ветвей. Для такого включения верна формула: 1 / R = 1 / r1 + 1 / r2 +…+ 1 / rn.

Принцип расчёта смешанного соединения построен на группировке электрической цепи по виду подключения элементов. Определение параметра выполняют поочерёдно. Сначала высчитывают сопротивление одного узла, включающего однотипное соединение, затем к результату добавляют следующий элемент. Эту операцию повторяют до тех пор, пока не останется один элемент.

В радиотехнике деталь, применяющуюся в качестве сопротивления, называют резистором. С его помощью обозначают и так называемый эквивалентный параметр, используемый при расчётах электрических цепей. Его вводят, если нужно определить, например, мощность источника тока, выходное напряжение.

Таким образом, чтобы правильно посчитать сопротивление, нужно учитывать несколько факторов. При этом нужно помнить о единой системе измерений. Следует придерживаться СИ. Все величины, используемые в формулах, должны подставляться в стандартных единицах измерения. Почти во всех таблицах значение удельного сопротивления даётся в мм2/м, что связано с измерением площади.

Зависимость от кривизны проезжей части

Генеральная

Когда транспортное средство ( автомобиль или железнодорожный поезд ) движется по кривой, сопротивление качению обычно увеличивается. Если кривая не так, чтобы точно противодействовать центробежной силе с равной и противоположной центростремительной силой из-за крена, тогда на транспортное средство будет чистая несбалансированная боковая сила. Это приведет к увеличению сопротивления качению. Банки также известно как «вираж» или «жаргон» (не путать с в виде ). Для железных дорог, это называется сопротивление кривой , но и для дорог она имеет (по крайней мере , один раз) называют сопротивление качению за счет поворотов .

Расчет сопротивления последовательных резисторов

Cила тока: формула

При последовательном сопротивлении нескольких резисторов соответственно увеличивается эквивалентная величина. Расчет сопротивления нескольких элементов, соединенных между собой последовательно, проводится за счет суммирования номиналов каждого элемента. Например, при соединении нескольких элементов, которые соединены в одну цепь последовательно, величина электрического сопротивления будет равной сумме уровня противодействия каждого из резисторов. Формула имеет одинаковый вид для любого количества резисторов.

Как найти сопротивление формула для последовательной цепи

Если заменить в последовательной цепи один из элементов, то соответственно изменится уровень противодействия направленному движению частиц в этой цепи. Это также повлечет изменение силы тока.


Резистор

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i {\displaystyle X=X_{0}+X_{i}}

Так как сопротивление при нулевой подъёмной силе пропорционально квадрату скорости, а индуктивное — обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости X 0 {\displaystyle X_{0}}

растёт, а X i {\displaystyle X_{i}}

— падает, и график зависимости суммарного сопротивления X {\displaystyle X}

от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 {\displaystyle X_{0}}

и X i {\displaystyle X_{i}}

, при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит, наивысшим

Для расчета используется постоянная g, которая равна 9,8 м/с2. 3 Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). 4 Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую — F=v2*β.

Расчет сопротивления параллельных резисторов

Сопротивление резистора — формула для рассчета

Сопротивление формула для параллельного соединения имеет несколько другой вид.

Формула

Относительно большого количества последовательных элементов при увеличении количества резисторов в цепи соответственно возрастает сложность проведения расчета. Удельное сопротивление буква, которая ему соответствует, – латинская ρ.

Использование параллельного соединения оправдано в цепях, в которых требуется высокая величина параметра. Тогда применяются радиоэлементы с одинаковым параметром мощности и сопротивления. Например, 10 элементов, обладающих уровнем сопротивления 1000 Ом, которые объединены в единую цепь с параллельным соединением, на выходе будут иметь величину препятствия движению заряженных частиц в 100 Ом.

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.


Общий вид элементов

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

Что такое вольтамперная характеристика

Какое страшное название. Глаза боятся, а голова запоминает.

Говоря простыми словами, это когда напряжение находится в зависимости от тока, протекающего в электрической цепи.

Также, такую характеристику подразделяют на линейную и нелинейную. В чем разница и что это вообще такое?

  1. Линейная, так же, как и нелинейная — это цепь.
  2. Линейная цепь — это та, которая содержит элементы напряжения и тока, от которых зависит сопротивление.
  3. У нелинейной элементами является зависимость напряжения на зажимах. Она не подчиняется закону Ома.

Разновидности сил сопротивления

Существует несколько типов силы сопротивления, отличающихся по характеру воздействия на движущиеся предметы.

Сила сопротивления качению

Сила сопротивления качению обозначается, как Pf. В данном случае сила определяется несколькими факторами:

  • разновидность и состояние опоры, по которой перемещается объект;
  • скорость движения тела;
  • давление воздуха и другие параметры окружающей среды.

Состояние и тип опорной поверхности определяет величину коэффициента сопротивления качению, который обозначается f. Если в среде повышается температура, и возрастает давление, то данный показатель будет уменьшаться.

Сила сопротивления воздуха

Сила сопротивления воздуха или величина лобового столкновения Pв образуется в результате различных показателей давления. Данная характеристика напрямую зависит от интенсивности вихреобразования спереди и сзади движущегося предмета. Указанные параметры определяются формой перемещающегося тела.

Примечание

Большее влияние на силу сопротивления будет оказывать вихреобразование в передней части объекта. Если плоскостенную фигуру закруглить спереди и сзади, то получится снизить сопротивление до 72%.

Рассчитать силу лобового сопротивления можно по формуле:

\($$P=cx\times p\times F_{b}$$\)

сх — обтекаемость или коэффициент лобового сопротивления; p — плотность воздуха; Fв — площадь лобового сопротивления (миделевого сечения).

Во время поступательного движения масса объекта встречает сопротивление разгону, то есть ускорению. Найти данную силу можно с помощью второго закона Ньютона.

\($$Pj=m\times dVdt$$\)

где m выражает массу движущегося объекта, а \(dVdt\) обозначает ускорение центра масс.

Как найти трение

Определить силу сопротивления можно, если применить третий закон Ньютона. Для того чтобы предмет равномерно перемещался по опоре в горизонтальном направлении, к нему необходимо приложить силу, соизмеримой с силой сопротивления. Корректно рассчитать данные величины можно с помощью динамометра. Сила сопротивления будет прямо пропорциональна массе объекта. Более точные расчеты производятся с учетом u коэффициента, который зависит от следующих факторов:

  • материал, из которого изготовлено опорное основание;
  • материал, из которого состоит перемещаемое тело.

Рассчитывая силу сопротивления, используют постоянную величину g, равную 9,8 метров на сантиметр в квадрате. При этом если движение тела происходит на определенной высоте, на него оказывает воздействие сила трения воздуха. Данная величина зависит от скорости, с которой движется предмет. Искомая величина определяется с помощью следующей формулы только при условии, что предмет перемещается на небольшой скорости:

\($$F=V\times a$$\)

где V является скоростью перемещения тела, a — коэффициентом сопротивления среды.

Пример из практики

Последовательно с источником освещения включен тестер. Напряжение осветительного прибора = 220 Вольт. Мощность неизвестна. На показателе амперметра указано 276 миллиампер тока. Какая величина у спирали лампы при последовательном включении в схему резисторов?

Формула нахождения сопротивления спирали

Электросопротивление представляет собой физическую величину, которая соответствует степени препятствия движению электрических частиц у каждого материала. Возможно измерить уровень величины мультиметром. В таком случае придется находить значение по формуле. Для предотвращения попадания электрического тока на непредназначенные для этого участки желательно заземлять линии передачи. Данная физическая величина используется во многих радиодеталях, например, светодиодах. В электрической цепи, чтобы узнать величину, требуется подключить к вольтметру фазу и ноль при известной силе тока, затем рассчитать по закону Ома.

3.11. Силы сопротивления движению и мощности, затрачиваемые на их преодоление

Силами сопротивления называются силы, препятствующие движению автомобиля. Эти силы направлены против его движе­ния.

Рис. 3.12. Силы сопротивления движению автомобиля

При движении на подъеме, характеризуемом высотой Н

п,длиной проекции
В
пна гори­зонтальную плоскость и углом подъема дороги α, на автомобиль действуют следующие силы со­противления (рис. 3.12): сила со­противления качению
Р
к,равная сумме сил сопротивления каче­нию передних (
Р
к1) и задних (
Р
к2)колес, сила сопротивления подъе­му
Р
п,сила сопротивления воз­духа
Р
ви сила сопротивления раз­гону
Р
и
.
Силы сопротивления ка­чению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги
Р
д
.

Сила сопротивления качению

Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на де­формируемых дорогах).

О потерях энергии на внутреннее трение в шине можно судить по рис. 3.13, на котором приведена зависимость между вертикаль­ной нагрузкой на колесо и деформацией шины — ее прогибом f

ш.

При движении колеса по неровной поверхности шина, испы­тывая действие переменной нагрузки, деформируется. Линия Оа,

которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией
аО,
отвечающей снятию нагрузки. Площадь области, заключенной между указанными кривыми, ха­рактеризует потери энергии на внутреннее трение между отдель­ными частями шины (протектор, каркас, слои корда и др.).

Потери энергии на трение в шине называются гистерезисом, а линия ОаО

— петлей гистерезиса.

Потери на трение в шине необратимы, так как при деформа­ции она нагревается и из нее выделяется теплота, которая рассе­ивается в окружающую среду. Энергия, затрачиваемая на дефор­мацию шины, не возвращается полностью при последующем вос­становлении ее формы.

Сила сопротивления качению Р

кдостигает наибольшего зна­чения при движении по горизонтальной дороге. В этом случае

Р

к
=fG
,

где G

вес автомобиля, Н;
f
— коэффициент сопротивления качению.

Рис. 3.13. Потери энергии на внутреннее трение в шине:

а

— точка, соответствующая мак­симальным значениям нагрузки и прогиба шины

Рис. 3.14. Зависимости силы сопротив­ления качению Р

ки мощности
N
к,не­обходимой для преодоления этого со­противления, от скорости автомобиля

При движении на подъеме и спуске сила сопротивления каче­нию уменьшается по сравнению с Рк

на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению

Рк
=fG
cos
α
,

где α

— угол подъема, °.

Зная силу сопротивления качению, можно определить мощ­ность, кВт, затрачиваемую на преодоление этого сопротивления:

Nк
=
(
vfG
cos
α
)/1000,

где v

— скорость автомобиля, м/с.

Для горизонтальной дороги cos 0° = 1 и

Nк
=
(
vP
к)/1000 = (
vfG
)/1000.

Зависимости силы сопротивления качению Рк

и мощности
Nк
от скорости автомобиля
v
показаны на рис. 3.14.

Виды сопротивлений в цепях переменного электрического тока.

⇐ ПредыдущаяСтр 4 из 15Следующая ⇒

В переменном электрическом токе элементы цепи обладают 2 видами сопротивлений: активным и реактивным.

При каждом виде сопротивления энергия электрического тока преобразуется в другие виды энергий.

Сопротивление называется активным, если энергия электрического тока преобразуется в виде теплоты.

Сопротивление называется реактивным, если энергия тока преобразуется на образование электромагнитного поля.

Известно 2 вида реактивного сопротивления.

Индуктивное сопротивление — это сопротивление, возникающее в результате явления самоиндукции.

Индуктивное сопротивление

Где ω — циклическая частота тока,

L — индуктивность.

Емкостное сопротивление — это сопротивление, которое оказывает переменному току конденсатор.

§ Генератором переменного тока

называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

Основными частями генератора являются (рис. 1):

§ индуктор

— электромагнит или постоянный магнит, который создает магнитное поле;

§ якорь

— обмотка, в которой индуцируется переменная ЭДС;

§ коллектор со щетками

— устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Рис. 1

Неподвижная часть генератора называется статором

, а подвижная —
ротором
. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S

вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией
B
⃗ (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля B

⃗ и нормали к плоскости рамки
n
⃗ меняется со временем по линейному закону. Если в момент времени
t
= 0 угол α0 = 0 (см. рис. 1), то

α

=
ω

t
=2
π

ν

t
,

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

Φ(t

)=
B

S
⋅cos
α
=
B

S
⋅cos
ω

t
.

Тогда согласно закону Фарадея индуцируется ЭДС индукции

e

=−Φ′(
t
)=
B

S

ω
⋅sin
ω

t
=E
m
⋅sin
ω

t
.

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

§ Действующим (эффективным) значением силы

переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I

.

§ Действующим (эффективным) значением напряжения

переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U

.

В контактной сети электрифицированных ж. д. используется постоянный электрический ток напряжением 3 кВили переменный однофазный ток промышленной частоты напряжением 25 кВ. При питании переменным током усложняется конструкция подвижного состава, но значительно упрощаются устройства энергоснабжения электрических железных дорог, увеличивается расстояние между тяговыми подстанциями при тех же потерях до 50 км (20—25 км при постоянном токе), снижается стоимость строительства контактной сети до 10%, в 2,5 раза меньше расход меди.

Билет № 11

1 Механическая работа. Мощность.

Если действующая на тело сила F вызывает его перемещение s, то действие этой силы характеризуется величиной, называемой механической работой

(или, сокращенно, просто
работой
).

Механической работой А называют скалярную величину, равную произведению модуля силы F, действующей на тело, и модуля перемещения s, совершаемого телом в направлении действия этой силы, т. е.

А=Fs. (3.9)

В случае, описываемом формулой (3.9), направление перемещения тела совпадает с направлением силы. Однако чаще встречаются случаи, когда сила и перемещение составляют между собой угол, не равный нулю или α. (рис. 30)

А=Fsсоsα. (3.10)

Таким образом, в общем случае механическая работа равна произведению модуля силы и модуля перемещения на косинус угла между направлениями силы и перемещения. Работа силы, направленной вдоль перемещения тела, положительна, а силы, направленной против перемещения тела, — отрицательна. По формулам (3.9) и (3.10) вычисляют работу постоянной силы. Единицу механической работы устанавливают из формулы (3.9). В СИ за единицу работы принята работа силы 1 Н при перемещении точки ее приложения на 1 м. Эта единица имеет наименование джоуль (Дж): 1 Дж = 1Н·1м.

Мощность-это величина, характеризующая быстроту совершения работы. Мощностью N

называют величину, равную отношению работы А к промежутку времени t, в течение которого эта работа была совершена:

N=A/t (3.11)

Из формулы (3.11) следует, что в СИ единицей мощности является 1 Дж/с (джоуль в секунду). Эту единицу иначе называют ватт (Вт), 1 Вт= 1 Дж/с.

Связь между мощностью и скоростью при равномерном движении найдем, подставив (3.10) в (3.11):

N=Fvcosα.

(Эта формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V — мгновенную скорость). Если направление силы совпадает с направлением перемещения, то cosα=1 и N=F·v. Из последней формулы следует, что

F=N/v и v=N/F.

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот. На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

⇐ Предыдущая4Следующая ⇒

Рекомендуемые страницы:

Силы сопротивления при больших скоростях

В случае, когда мы имеем дело с малыми скоростями, сопротивление будет зависеть от:

  • вязкости жидкости;
  • скорости движения;
  • линейных размеров тела.

Рассмотрим действие законов трения при больших скоростях. Так, к воздуху и в особенности, к воде законы вязкого трения будут мало применимыми. Даже при наличии таких скоростей, как 1 см/с, они будут пригодными исключительно в отношении тел крошечных размеров (в миллиметрах).

Замечание 2

Сопротивление, которое испытывает ныряющий в воду пловец, ни в коей мере не будет подчиняться действию закона вязкого трения.

При медленном движении жидкость станет плавно обтекать предмет движения. При этом сила сопротивления, которую он будет преодолевать, и окажется силой вязкого трения.

В условиях большой скорости, позади движущегося объекта возникнет уже более сложное движение жидкости. В жидкости начнут то появляться, то исчезать разные струйки, формируя при этом необычные по форме фигуры, вихри, кольца. Таким образом, картина струек будет подвержена постоянным изменениям. Возникновение подобного движения получило название турбулентного.

Турбулентное сопротивление будет зависимым от скорости и размеров предмета не так, как при вязком. Так, оно окажется пропорциональным квадратам скорости и линейных размеров. Вязкость жидкости при подобном движении перестает иметь решающее значение, а определяющим свойством выступает ее плотность. Таким образом, для силы $F$ турбулентного сопротивления справедлива формула:

$F=pv^2L^2$, где:

  • $v$– скорость движения,
  • $L$– линейные размеры предмета,
  • $p$ – плотность среды.

Определение силы трения

Силы трения определяются при помощи третьего закона Ньютона, в соответствии с которым сила сопротивления приравнивается силе, с которой необходимо воздействовать на тело, чтобы перемещать его равномерно по горизонтальной поверхности. Ее измеряют, используя динамометр.

Значение силы трения прямо пропорционально зависит от массы тела и материала, из которого оно состоит. Также следует учитывать коэффициент u, зависящий от материала поверхности опоры. Кроме того, для расчета силы трения используют ускорение свободного падения \(g=9.8 м⁄с^2\) .

Не нашли что искали?

Просто напиши и мы поможем

При движении тела высоко над землей, силы сопротивления зависят от плотности воздуха, скорости перемещения тела. При небольшой скорости движения силу трения определяют по формуле: \(F=va\), где \(v\) – скорость перемещения тела; \(a\) – коэффициент сопротивления воздуха.

Чему равно напряжение.

Напряжение напрямую связано с работой тока, зарядом и сопротивлением. Чтобы измерить напряжение непосредственно в электрической цепи, к ней нужно подключить вольтметр. Он присоединяется к цепи параллельно, в отличие от амперметра, который подключается последовательно. Зажимы измерительного прибора крепятся к тем точкам, между которыми нужно вычислить напряжение. Чтобы он правильно показал значение, нужно включить цепь. На схемах вольтметр обозначается буквой V, обведенной в кружок.

Изображение вольтметра и электрической цепи

Напряжение обозначается латинской , а измеряется в . Оно равно работе, которое совершает поле при перемещении единичного заряда. Формула напряжения тока – это U = A/q, где A – работа тока, q – заряд, а U – само напряжение.

Обратите внимание! В отличие от магнитного поля, где заряды неподвижны, в электрическом поле они находятся в постоянном движении. Электрическое поле

Электрическое поле

Формулировка закона Ома

Закон Ома имеет следующую формулировку. Чтобы рассчитать сопротивления, нужно напряжение разделить на силу тока в электрической цепи. Физическая величина обуславливается количеством свободных заряженных частиц в материале.

Какой буквой обозначается сопротивление? В системе измерений СИ на конгрессе ООН символом для записи физического явления была избрана латинская R (от английского resistance).

Отличные степени величины присущи каждому материалу из-за разной концентрации носителей электрического тока. Наибольшая концентрация присуща металлам, поэтому именно они являются лучшими проводниками. Особенность заключается в максимальном количестве проводящих электронов, представляющих собой заряженные частицы, не принадлежащие ни одной элементарной частице в металле или другом сырье. Возникновение тока и как следствие движение заряженных частиц возникают под действием внешних электрических полей.

Делитель напряжения

Наиболее применяемые готовые блоки питания рассчитаны на выходные напряжения: 9, 12 или 24 вольта. В то же время большинство электронных схем и устройств использует напряжение питания в интервале от 3 до 5 В. В этом случае возникает потребность снизить величину Uпит до необходимого значения. Сделать это можно, используя делитель напряжения, который имеет много вариантов исполнения. Самый простой – делитель на резисторах.

Схема делителя, выполненного на резисторах

Подключение светодиода через резистор и его расчет

Подобные делители напряжения применяются исключительно в маломощных контурах. Это обусловлено их низким КПД. Часть мощности блока питания рассеивается на делителе, превращаясь в тепло. Эти потери тем больше, чем больше нужно уменьшить исходное напряжение. Подключение нагрузки параллельно одному плечу требует того, чтобы Rн было намного больше резистора, установленного в этом плече. Иначе делитель будет выдавать нестабильное питание.

При такой схеме напряжение по плечам делителя распределяется согласно полученным соотношениям между R1 и R2. Величина сопротивлений при этом роли не играет. Но следует помнить, что при низких значениях R1 и R2 увеличивается и мощность на нагрузке, и величина потерь на нагревание элементов.

Внимание! Перед тем, как вычислять точные параметры, нужно помнить, как подобрать резисторы. При их равном значении напряжение на выходе делится пополам

Если равенство не соблюдается, снимать поделенное напряжение нужно с элемента, имеющего больший номинал.

Пример схемы делителей на резисторах с малыми и большими значениями

Закон Ома для полной цепи

Полной цепью

(в отличие от участка цепи, применительно к которому мы излагали всё выше) называется
цепь с учетом источника тока
.

Почему это важно?

Именно потому, что если мы представим себе электрическую цепь условно как систему труб для воды, то участок цепи это будет незамкнутый кусок трубы, а полная цепь — зацикленная система

.

Из примера может показаться, что участок цепи есть незамкнутая в электрическом смысле цепь. Нет, пример приведен не для этого. И там, и там электрическая цепь замкнута.

Просто нам нужно обозначить, что без учета источника тока и его внутреннего сопротивления (r) цепь не полная, а расчёт не всегда способен учитывать все значимые характеристики.

Ну а внутреннее сопротивление

, как вы наверное догадались — это то сопротивление, которым обладает источник тока. Да, току в цепи сложно проходить и через сам источник! Даже сам источник провоцирует энергетические потери. А вот считать его аналогично расчёту для участка цепи нельзя.

Получается, что в закон Ома добавится ещё и внутренне сопротивление. И всё! Ничего страшного.

Формулировка закона Ома для полной цепи немного изменится. Теперь у нас слово напряжение заменится словом ЭДС (электродвижущая сила), а слово сопротивление заменится суммой внешнего сопротивления цепи и внутреннего сопротивления источника тока. Ну и формула будет такая:

Примеры решения задач

ПРИМЕР 1

Задание

Максимальная скорость автомобиля на горизонтальном участке дороги равна при максимальной мощности его равной P. Коэффициент лобового сопротивления автомобиля C, а наибольшая площадь сечения в направлении, перпендикулярном скорости S. Автомобиль подвергся реконструкции, наибольшую площадь сечения в направлении, перпендикулярном скорости уменьшили до величины , оставив коэффициент сопротивления без изменения. Считайте силу трения о поверхность дороги неизменной, найдите какова максимальная мощность автомобиля, если его скорость на горизонтальном участке дороги стала равна

Плотность воздуха равна .

Решение

Сделаем рисунок.

Мощность автомобиля определим как: где — сила тяги автомобиля. Считая, что автомобиль на горизонтальном участке дороги движется с постоянной скоростью, запишем второй закон Ньютона в виде: В проекции на ось X (рис.1), имеем: Силу сопротивления, которую испытывает автомобиль, двигаясь в воздухе, выразим как:

Тогда мощность автомобиля можно записать:

Выразим из (1.5) силу трения автомобиля о дорогу:

Запишем выражение для мощности, но с изменёнными по условию задачи параметрами автомобиля:

Учтем, что сила трения автомобиля о дорогу не изменилась, и примем во внимание выражение (1.6):

Ответ

ПРИМЕР 2

ЗаданиеКакова максимальная скорость шарика, который свободно падает в воздухе, если известны: плотность шарика (), плотность воздуха (), масса шарика (), коэффициент сопротивления C?
РешениеСделаем рисунок.
Запишем второй закон Ньютона для свободного падения шарика:

Удельное электрическое сопротивление

Удельное сопротивление представляет собой параметр, который определяет уровень препятствия движению электрического тока через проводник определенной длины. Зависит от параметра конкретного вещества, от длины. Для материала с однородными свойствами и известной величиной сопротивления и длиной проводника расчет удельного параметра идет по формуле ниже.

Расчет удельного объемного электрического сопротивления

Фактически смысл уравнение имеет следующий. Удельное сопротивление – величина сопротивления при прохождении через проводник определенной длины, с одинаковой площадью поперечного сечения на протяжении всего маршрута.

Параметр измеряется в Ом*метр. Таким образом, один Ом*метр равняется уровню препятствия направленному движению заряженных частиц через однородную проводящую среду с длиной в 100 см и площадью сечения в 1 квадратный метр.

Расчет резисторов

Для подбора и установки элементов в схему необходимо предварительно рассчитать номинал и мощность компонентов.

Формула для расчета сопротивления и мощности

Сопротивление тока: формула

Используют Закон Ома для участка цепи, чтобы вычислить сопротивление резистора, формула имеет вид:

R = U/I,

где:

  • U – напряжение на выводах элемента, В;
  • I – сила тока на участке цепи, А.

Эта формула применима для токов постоянного направления. В случае расчётов для переменного тока берут в расчёт импеданс цепи Rz.

Важно! Строение схем не ограничивается установкой только одного резистора. Обычно их множество, соединены они между собой параллельно и последовательно

Для нахождения общего показателя применяют отдельные методы и формулы.

Последовательное соединение

При таком соединении «выход» одного элемента соединяется с «входом» другого, они идут последовательно друг за другом. Как рассчитать резистор в этом случае? Можно использовать электронный онлайн-калькулятор, можно применить формулу.

Общее значение будет составлять сумму сопротивлений компонентов, входящих в последовательное соединение:

R123 = R1+R2+R3.

На каждом из них произойдёт одинаковое падение напряжения: U1, U2, U3.

Параллельное соединение

При выполнении данного вида соединения одноимённые выводы соединяются попарно, формула имеет вид:

R = (R1 x R2)/ (R1 + R2).

Обычно полученное значение R бывает меньше меньшего из всех значений соединённых элементов.

Последовательное и параллельное соединения

Информация. На практике параллельное или последовательное присоединение применяют, когда нет детали необходимого номинала. Элементы для таких случаев подбирают одинаковой мощности и одного типа, чтобы не получить слабого звена.

Смешанное соединение

Рассчитывать общее сопротивление смешанных соединений возможно, применяя правило объединения. Сначала выбирают все параллельные и последовательные присоединения и составляют эквивалентные схемы замещения. Их начинают рассчитывать, используя формулы для каждого случая. Из полученной более простой схемы вновь выделяют параллельные и последовательные звенья и опять производят расчёты. Делают это до тех пор, пока не получат самое элементарное соединение или один эквивалентный элемент. Вычисленный результат будет являться искомым.

Метод расчёта при смешанном соединении

Расчет

Основную формулу нахождения показания проводника можно вычислить или представить как R=U/I, где U является разностью напряжения на проводниковых концах, а I считается силой тока, которая протекает под разностью напряжения. Получается значение, представленное в Омах.

Вам это будет интересно Измерение изоляции

Обратите внимание! В дополнение к теме, как определить сопротивление резистора по формуле, правильно вычислять необходимые показания также можно при помощи специального измерительного прибора под названием омметр или мультиметр.


Формула, используемая повсеместно для расчета

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.

Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи
I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Расчет сопротивления электрического проводника

Сопротивление электрического проводника рассчитываем по формуле:

R = ρ * L / S

  • R — сопротивление электрического проводника
  • ρ — удельное сопротивление проводника вычисляется по формуле (1): ρ = ρ20[1 + α(t — 20)] ρ20 — удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
  • t — температура проводника
  • α — температурный коэффициент электрического сопротивления (Таблица 1)
  • L — длина электрического проводника
  • S — сечение электрического проводника
  • Как узнать сопротивление 1 метра медного провода

    После выяснения всех факторов, влияющих на резистентность медного провода, можно объединить их в формуле зависимости сопротивления от сечения проводника и узнать, как вычислить этот параметр. Математическое выражение выглядит следующим образом: R= pl/s, где:

    • ρ — удельное сопротивление;
    • l — длина проводника, при нахождении сопротивления медного проводника длиной 1 м, l = 1;
    • S— площадь поперечного сечения.

    Вам это будет интересно Особенности светильника ДРЛ 250

    Для вычисления S, в случае провода цилиндрической формы, используется формула: S = π ∙ r2 = π d2/4 ≈ 0.785 ∙ d2, здесь:

    • r — радиус сечения провода;
    • d — его диаметр.

    Если провод состоит из нескольких жил, то суммарная площадь будет равна: S = n d2/1,27, где n — количество жил.

    Если проводник имеет прямоугольную форму, то S = a ∙ b, где a — ширина прямоугольника, b — длина.

    Важно! Узнать диаметр сечения можно штангенциркулем. Если его нет под рукой, то намотать на любой стержень измеряемую проволоку, посчитать количество витков, желательно, чтобы их было не меньше 10 для большей точности

    После этого измерить намотанную часть проводника, и разделить значение на количество витков.

    Вычисление площади сечения

    Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]