Что такое гармоника в электротехнике


Гармоники в электрических сетях, причины, влияние, методы борьбы

Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это результат искажения частоты тока или напряжения питания, которое может быть вызвано характером нагрузки или самим источником питания. Причины искажения: постоянные и непостоянные нелинейные нагрузки (работа выпрямителей, преобразователей частоты, трансформаторов разовое включение большого потребителя, например сварочного автомата или станка), цикличные нагрузки (крупный потребитель подключается в определенное время суток к сети), пиковые нагрузки при массовом потреблении электроэнергии. Часто причиной возникновения гармонических колебаний по напряжению является изношенность оборудования в энергогенерирующей отрасли и распределительных сетях (в основном, это старые ТП и сети с малым пределом потребления).

  1. Источники гармонических токов:
  2. Последствия гармоник и защита
  3. Негативные последствия гармонических токов:
  4. Экономические последствия гармонических токов:

Источники гармонических токов:

— двигатели с плавным пуском, управляющие устройства (преобразователи частоты), блоки питания;
— печи (дуговые, индукционные), сварочные аппараты;

— энергосберегающие лампы (люминесцентные, дуговые, газоразрядные);

— современная бытовая и офисная техника.

Критическим для сети переменного тока считается оборудование, способное вызывать гармоники, соответствующее 20% потребления по мощности. В таких случаях необходимо применять меры по устранению токовых искажений.

Последствия гармоник и защита

По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом. В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.

Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.

Важно! При наличии большого количества гармоник возможны однофазные КЗ с пробоем на землю. Также большое количество гармоник приводит к перегрузке нейтрали, что снижает степень защищенности системы.

Для защиты от гармоник в устройстве используются различные схемы. Основные:

— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;

— применение конденсаторов (выполняют роль компенсатора реактивной мощности);

— применение фильтров гармоник.

Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.

Подробнее о гармониках можно указать из следующего видео:

Негативные последствия гармонических токов:

— перегрузка в распределительных сетях;

— перегрузка в нейтралях;

— перегрузка трансформаторов, генераторов, двигателей, что вызывает преждевременное старение оборудования;

— шум, вибрации, как следствие – механические разрушения неправильно работающих электроприводов;

— снижение надежности электронной части, повышение вероятности выхода ее из строя;

— помехи в линиях связи, коммуникационном оборудовании, записывающих устройствах.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:

  • Сопутствующий нагрев, выводящий из строя изоляцию двигателей, обмоток трансформаторов, снижающий сопротивление конденсаторов и.т. При нагревании фазного провода или других токопроводящих элементов в диэлектриках возникают необратимые процессы, снижающие их изоляционные свойства.
  • Ложное срабатывание в распределительных сетях – приводит к отключению автоматов, высоковольтных выключателей и прочих устройств, реагирующих на изменение режима, обусловленное гармониками.
  • Вызывает асимметрию в промышленных сетях с трехфазными источниками при возникновении гармоники на одной фазе. От чего может нарушаться нормальная работа трехфазных выпрямителей, силовых трансформаторов, трехфазных ИБП и прочего оборудования.
  • Возникновение шума в сетях связи, влияние на смежные слаботочные и силовые кабели за счет наведенной ЭДС. На величину гармоники ЭДС влияет как расстояние между проводниками, так и продолжительность их приближения.
  • Приводит к преждевременному электрическому старению оборудования. За счет разрушения чувствительных элементов, высокоточные приборы утрачивают класс точности и подвергаются преждевременному изнашиванию.
  • Обуславливает дополнительные финансовые расходы, обуславливаемые потерями от индуктивных нагрузок, остановкой производства, внеочередными ремонтами и преждевременной поломкой.
  • Потребность увеличения сечения нулевых проводов в связи с суммированием гармоник кратных 3-ей в трехфазных сетях.

Высшие гармоники в электросетях

Постоянный рост количества нелинейных потребителей в наших электрических сетях приводит к повышенному «загрязнению электросетей». Обратное воздействие на сеть является для энергетики такой же проблемой, как загрязнение воды и воздуха для экологии.

В идеальном случае на выходных клеммах генераторы выдается чисто синусоидальный ток. Синусоидальное напряжение рассматривается как идеальная форма переменного напряжения, любое отклонение от него считается сетевой помехой.

Рис.1 Обратные воздействия на сеть, вызванные преобразователями частоты.

Все больше потребителей получают из сети несинусоидальный ток. Быстрое преобразование Фурье (БПФ) этих «загрязненных» токовых волн показывает наличие широкого спектра колебаний с гармониками различного порядка, которые обычно называют высшими гармониками.

Рис.2 Анализ высших гармоник (Быстрое преобразование Фурье)

Высшие гармоники наносят вред электрическим сетям, они опасны для подключенных потребителей так же, как загрязненная вода вредна для организма человека. Они приводят к перегрузкам, снижают срок службы и, при определенных условиях могут вызывать преждевременный выход из строя электрических и электронных потребителей.

Нагрузка высшими гармониками является основной причиной невидимых проблем с качеством напряжения, приводящих к огромным расходам на ремонт или покупку нового оборудования взамен поврежденного. Недопустимо высокое обратное воздействие на сеть и вызванное им низкое качество напряжения могут, таким образом, вызвать сбои производственного процесса вплоть до остановки производства.

Высшие гармоники – это токи или напряжения, частота которых превышает основное колебание 50/60 Гц и кратна этой частоте основного колебания. Высшие гармоники тока не вносят вклад в активную мощность, но оказывают только термическую нагрузку на сеть. Поскольку токи высших гармоник протекают в дополнение к «активным» синусоидальным колебаниям, они обеспечивают электрические потери в рамках электроустановки, что может привести к термической перегрузке. Дополнительные потери в потребителе электроэнергии приводят, кроме того к нагреву и перегреву, а также к сокращению срока службы оборудования.

Оценка нагрузки высшими гармониками, как правило, выполняется в точке подключения (или передачи в сеть электроснабжения общего пользования) соответствующей организации по энергоснабжению. Все чаще эти точки называют Point of Common Coupling (PCC). При определенных условиях может потребоваться определение и анализ нагрузки высшими гармониками со стороны определенного оборудования или групп оборудования для выявления внутренних проблем с качеством электрической сети и их причин, их вызывающих.

Рис.3 Поврежденные высшими гармониками конденсаторы

Для оценки нагрузки высшими гармониками используются следующие параметры:

Коэффициент суммарных гармонических искажений (THD)

Коэффициент суммарных гармонических искажений (THD) или общее гармоническое искажение позволяет квалифицировать размер долей, возникающих в результате нелинейного искажения электрического сигнала. Это отношение эффективного значения высших гармоник к эффективному значению первой гармоники. Значение THD используется в сетях низкого, среднего и высокого напряжения. Обычно для искажения тока используется коэффициент THDi , а для искажения напряжения – коэффициент THDu.

Коэффициент искажения для напряжения

  • M = порядковый номер высшей гармоники
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)
  • Основная гармоника fund соответствует n = 1

Гармоники тока и напряжения в электросетях

Проблема гармоник….

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Если вы сталкиваетесь с таким оборудованием или имеете опыт работы в сетях с гармониками, тогда дроссели с конденсаторами или фильтрокомпенсирующие установки (ФКУ) могут прийти вам на помощь. Гармонические искажения и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками.

дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;

ложные срабатывания автоматических выключателей и предохранителей;

наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;

гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;

повреждение чувствительного электронного оборудования;

интерференция систем коммуникации.

Следующие разделы являются описанием гармоник, характеризацией проблемы и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников.

Сейчас, широко используемые в выпрямительных цепях UPS полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска пришедшие на смену устаревшим устройствам изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры привнесли существенные изменения в схемотехнику систем контроля, они, также, создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

Силовое электронное оборудование: частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты.

Сварочное, дуговое оборудование: дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы)

Насыщаемые устройства: Трансформаторы, двигатели, генераторы, и т.д. Гармонические амплитуды на этих устройствах являются обычно незначительна по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что насыщение не происходит.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной (основной) частотой 50 Гц (т.е 1-я гармоника=50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Пятая гармоника имеет частоту в пять раз выше частоты основной гармоники. На рисунке отметки с цифрами.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Смотрите также другие статьи :

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Источник

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.


Рис. 3. Схема LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.


Рис. 4. Шунтирующий фильтр

За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.


Рис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

В данной статье мы рассмотрим что такое гармоники, фундаментальную частоту и сложные формы волны из-за гармоник, в конце статьи подведем краткие итоги по этой теме.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]