Подключение стабилизатора
Схема подключения однофазного стабилизатора электроэнергии в сети с напряжением 220 Вольт
Для выполнения данного правила нужно выключить вводной автомат, который находится в распределительном щитке, затем нужно ещё раз проверить, отключена ли электроэнергия. Для этих целей воспользуйтесь специальным указателем.
В основном, стабилизатор включается сразу после подачи напряжения. Стабилизатор электроэнергии имеет последовательный тип включения. Маленькой шпаргалкой для вас может стать схема подключения стабилизатора, нанесенная на его корпус производителем.
Однофазный стабилизатор имеет три контакта, которые участвуют в процессе подключения:
- От вводного автомата берётся фазный провод и подключается к месту «входа» в колодке подключения проводов у стабилизатора;
- К «выходу» подключите фазный провод, отвечающий за распределение нагрузки;
- Последний шаг. Найдите нулевой контакт стабилизатора, и подключите его к нулевому проводу сети, избегая разрыва.
Нулевой провод для начала необходимо соединить со стабилизатором, далее – к общему нулевому проводу сети.
Что делать если на корпусе стабилизатора 4 контакта для подключения
Случается так, что при осмотре стабилизатора электроэнергии вы можете наблюдать сразу 4 контакта для подключения. Это выглядит следующим образом:
- фаза — «вход»;
- 0 – «вход»;
- фаза – «выход»;
- 0 – «выход».
При наличии такой схемы в стабилизаторе напряжения, подключение к сети происходит следующим образом:
Нулевой и фазный провода электрощита соединяются с соответствующим контактом, называемым «вход» на корпусе защитного прибора. При этом нулевой и фазный провода, отвечающие за нагрузку, присоединяются к контактам, с обозначением «выход».
Когда процесс установки подойдет к завершению, ещё раз проверьте, правильно ли вы соединили все провода. Перед тем, как включить прибор первый раз, необходимо обесточить все электроприборы, и достать все вилки из розеток.
Когда стабилизатор включился, внимательно проследите за исправностью его функционирования. Он должен тихо работать без посторонних шумов в виде треска, и др.
Также, в продаже можно найти стабилизаторы напряжения с небольшой мощностью (P<1,5 кВт). Они выпускаются как законченный самостоятельный блок, в комплектацию которого шнур для подключения к сети со стандартной вилкой. На поверхности корпуса устройства есть несколько розеток.
Любое электрическое устройство, работу которого вы хотите защитить от риска, присоединяется к стабилизатору напряжения именно посредством такой розетки. Исходя из этого, можно сделать вывод, что устройств, защищающие электроэнергию и работающие на её основе приборы, являются своего рода дополнительным звеном между нагрузкой и электрической сетью, которые обеспечивают надежную защиту от скачков напряжения и перегрузки сети.
Зачем нужен стабилизатор напряжения
Стабилизатор напряжения служит для выравнивания входного напряжения. Также, стабилизатор служит в качестве защиты от короткого замыкания и перегрузок электросети. Простыми словами, если у вас дома плохое напряжение, оно низкое или сильно скачет, то, нужен стабилизатор.
На сегодняшнее время существуют различные стабилизаторы напряжения: релейные, сервоприводные, симисторные, и, другие. Подробно рассматривать их конструкцию мы не будет, поскольку эта тема не одной статьи.
Лучше рассмотрим, из-за чего стабилизатор напряжения отключается, ведь это одна из самых распространённых проблем при эксплуатации данного оборудования.
Почему стабилизатор напряжения постоянно отключается
Бывает так, что после приобретения и установки стабилизатора напряжения, тот начинает выключаться и уходит в задержку. Задержка стабилизатора — это определённое время, как правило, 5-6 сек., во время которого автоматика проверяет входящее напряжение, после чего даёт команду стабилизатора на включение.
Так вот, частые отключения стабилизатора напряжения, чаще всего, связаны:
- С недостаточным входным напряжением в электросети, напряжение сильно низкое;
- Со слабой мощностью стабилизатора напряжения;
- Из-за короткого замыкания в электросети;
- Вследствие высоких пусковых токов;
- Из-за перегрева стабилизатора.
Рассмотрим каждую из вышеперечисленных проблем по порядку, чтобы понимать, что делать, если стабилизатор напряжения отключается.
Чтобы увеличить ресурс транзисторов и серводвигателя
Мой читатель и подписчик группы СамЭлектрик.ру Андрей Алтухов поделился своей схемой, которая позволяет избежать перегрева транзисторов и увеличить ресурс двигателя за счет того, что стабилизатор не реагирует на небольшие (2-3 В) изменения входного напряжения. Схема и описание приводится “как есть”, кто повторит доработку – пишите в комментариях!
Вот, что пишет Андрей:
В комментариях предлагали варианты как сберечь плату и электродвигатель от преждевременного выхода из строя. После того, как дважды за 2 года сдох моторчик сервопривода от перегрева щёток и почернела плата управления в районе силовых транзисторов решил углубиться в вопрос. Побаловался с коэффициентами усиления операционника, покрутил туда-сюда, но всё равно линейный режим работы никуда не делся.
Думал решить быстренько вопрос установкой стабилитрона или диода на худой конец, но уровни напряжений слишком малы, чтобы хоть как-то разгуляться. Соорудить нечто с зоной нечувствительности на транзисторах тоже можно, но это всё грандиозная лепнина на плате. В голове роились идеи вставить второй операционник и включить в разрыв цепи управления.
И тут отец, заглянув через плечо, на схеме обнаружил абсолютно незадействованный (по крайней мере в однофазной версии) операционный усилитель, уже распаянный на плате на ногах 12, 13, 14 с выходом на контакт 4XT2, который просто висит в воздухе. А дальше были прикидки коэффициентов усиления, обратной связи. В итоге родилась вот такая схема. (картинка на основе взятой из статьи).
Схема стабилизатора с порогом срабатывания
Пороговым элементом служат два встречно-параллельно включенных диода. резисторы R101 и R102 регулируют обратную связь и дают в итоге ширину зоны нечувствительности. Я остановился на номиналах 10k и 2.2k что дает нечувствительность примерно 3V по сети переменного тока. Как только напряжение в сети изменяется на большее значение, открывается один из диодов и на электромотор подается не плавно нарастающее, а сразу порогом, позволяя двигателю сразу сделать шаг. Кроме того, потребовалась коррекция выходного напряжения подстроечником, чтобы выставить выходное напряжение. Ну и вторым файлом прикладываю, как выглядит печатная плата после доработки.
Печатная плата стабилизатора после доработки
Да, в оригинальной схеме вместо мотора подключал маленькую лампочку и вольтметр. Напряжение плавно нарастает в любую из сторон. В моей схеме двигатель включается, когда уже есть более серьёзное отклонение напряжения. При этом если напряжение резко скакнуло в любую из сторон, никаких задержек в срабатывании не будет.
Доработка влияет на точность, но в реальной жизни это не играет особой роли. Напряжение на выходе в моём случае имеет право гулять +- 3 вольта от выставленного номинала. Это неизбежная расплата за меньшую нервозность сервопривода. Можно увеличить коэффициент усиления первого операционника (на схеме синий текст) и получить +- 1.5 вольта.
Есть ещё момент. Все опыты проводились на стабилизаторе, в котором моторчик был заменен на более дорогую версию с графитовыми щётками. Как будет крутиться со штатным моторчиком проверить не удалось.
Что делать, если выключается стабилизатор
Каждый стабилизатор напряжения рассчитан под определённый рабочий диапазон напряжений. Другими словами, стабилизатор будет отключаться, если напряжение в электросети, станет выше или ниже заданных в его автоматике параметров. Нижний порог отключения стабилизатора может быть разным — 90 или 140 Вольт, все зависит от модели и типа стабилизатора. Это же самое, касается и верхнего порога напряжений, как правило, в 240 Вольт.
Поэтому, если у вас в электросети слишком низкое напряжение, ниже 140 или 90 Вольт, то стабилизатор будет выключаться автоматически. Решить данную проблему можно либо заменой стабилизатора напряжения на другой, который будет работать от сильно низкого напряжения, либо написав заявление в РЭС. Дело в том, что напряжение даже в 190 Вольт, не говоря уже про 140, не является нормой, и вы можете смело предъявлять свои претензии по этому поводу.
Причины поломок
Основной причиной неисправности стабилизатора напряжения Ресанта 10000ВТ является неправильная эксплуатация оборудования. Достаточно часто отмечается перегрев выпрямителей при использовании техники в пыльном помещении. Внутри корпуса оседает грязь, что ухудшает охлаждение устройства, возникают проблемы с перенапряжением силовой части и исполнительных плат.
Также причиной поломки электрических выпрямителей может стать эксплуатация в условиях повышенной влажности. Контакты и платы начинают окисляться, ухудшается соединение, что в конечном счете приводит к серьезным поломкам стабилизаторов — восстановить их можно заменой сервопривода или силовых элементов.
В инструкции по эксплуатации стабилизатора можно найти все рекомендации по использованию техники, что позволит предупредить появление характерных поломок и необходимость дорогостоящего и сложного ремонта оборудования.
В линейке Ресанта можно найти как простые и недорогие бытовые модели, которые предназначены для эксплуатации внутри помещений, так и специализированные промышленные установки, которые могут использоваться в условиях повышенной влажности и пыльных загрязненных цехах. Правильно подобрав стабилизатор, можно гарантировать беспроблемность работы и отсутствие поломок даже при повышенной нагрузке.
Вам это будет интересно Блок питания из энергосберегающей лампы своими руками