Тяговые и трансформаторные подстанции — Высоковольтные выключатели переменного тока


Элегазовые выключатели

Рисунок 1 – Конструкция элегазового выключателя

Элегазовый выключатель работает за счет изоляции фаз между собой с помощью газа(обычно используется электропроточный газ SF6 – так называемый «элегаз»). При поступлении сигнала отключения оборудования контакты камер размыкаются. Они создают электрическую дугу, которая размещается в газовой среде. Дуга разделяет газ на отдельные компоненты, а высокое давление в резервуаре способствует ее гашению.

Преимущества:

  • Многофункциональность(может использоваться при любом напряжении)
  • Высокая скорость срабатывания
  • Возможность использования в критических ситуациях(пожар, землетрясение)
  • Большой срок службы

Недостатки:

  • Большая цена конструкцииНевозможность работы при низких температурах
  • Сложность обслуживания
  • Необходимость установки специального фундамента для такой конструкции

Тяговые и трансформаторные подстанции — Высоковольтные выключатели переменного тока

Страница 13 из 52

Назначение, классификация и основные параметры высоковольтных выключателей переменного тока Высоковольтные выключатели — основные аппараты для включения и отключения высоковольтных цепей (выше 1000 В) переменного тока при нормальном и аварийном (КЗ) режимах. По роду дугогасящей среды выключатели подразделяют на масляные, воздушные, газогенерирующие, вакуумные и элегазовые. Выключатели различают также по следующим признакам: по числу фаз — одно, двух и трехфазные; месту установки — для внутренней и наружной; способу управления — с ручным или дистанционным приводом; времени отключения — быстродействующие (до 0,08 с), ускоренного действия (до 0,12 с), небыстродействующие (до 0,25 с). Работа высоковольтных выключателей нормального исполнения предусматривается при температуре окружающей среды от + 35 до —40°С на высоте не более 1000 м над уровнем моря Кроме нормального исполнения, выпускают высоковольтные выключатели специальных конструкций для работы в северных, тропических, высокогорных, химически активных средах и др. Выключатели должны удовлетворять следующим требованиям: надежно отключать цепи при гарантированных заводом условиях; обеспечивать удобство и безопасность эксплуатации; допускать автоматическое повторное включение (АПВ) после отключения. Все параметры выключателя указываются в прилагаемом паспорте, а основные — на его щитке; они характеризуют условия надежной работы выключателя. Важнейшими параметрами выключателя являются следующие. Номинальное напряжение Uном (линейное), которое определяет качество и размеры изолирующих частей, а следовательно, все размеры выключателя и его массу. Выключатель может быть использован в установках с рабочим напряжением ниже номинального, так как это не вызовет повреждения его изоляции. Заводы-изготовители гарантируют также работу выключателей при повышенных напряжениях, которые не должны превышать номинального на 20% для выключателей напряжением до 35 кВ и на 15% для выключателей напряжением 110 и 220 кВ. Ниже приведены соотношения между номинальным Uном и наибольшим рабочим Ннаиб. раб напряжениями в кВ: 6/7,2; 10/12; 35/40,5; 110/126; 220/252. Номинальный ток — это наибольший ток (действующее значение), который выключатель способен длительно проводить при номинальном напряжении, номинальной частоте и номинальной температуре окружающей среды, при этом температура частей выключателя не должна превышать допускаемую для длительной работы. Таким образом, номинальный ток характеризует длительную работу выключателя без перегрева токоведущих частей и контактов, он определяет их размеры, однако не влияет на габариты выключателя. Номинальный ток отключения — это наибольший ток КЗ (действующее значение периодической составляющей тока КЗ) который способен надежно отключить выключатель при напряжении, равном наибольшему рабочему напряжению в определенном цикле работы при восстановлении напряжения в соответствующей электрической цепи. Для выключателей переменного тока установлены два цикла работы: с АПВ и без АПВ. Цикл с АПВ имеет вид O-T-BO-180-BO, где О — отключение выключателя релейной защитой при КЗ на защищаемой цепи; Т — гарантируемая для выключателя минимальная бестоковая пауза для деионизации среды до АПВ; ВО — включение выключателя устройством АПВ и немедленное за ним отключение релейной защитой; 180— промежуток времени, с, до следующего включения; ВО — включение и Отключение. В цикле без АПВ после отключения выключателя релейной защиты при КЗ в цепи он может быть включен на это КЗ еще 2 раза, но с интервалом не менее 180 с. Этот цикл обозначается О-180-ВО-180-ВО. Большинство современных выключателей удовлетворяет циклу АПВ, особенно быстродействующие, у которых процесс деионизации дугового промежутка и среды осуществляется активно. Необходимость быстродействия отключения и полной деионизации среды обусловлена тем, что АПВ обеспечивает устойчивую работу электрической системы только в том случае, если оно происходит не более чем через 0,5 с после отключения выключателя. Номинальная мощность отключения — это наибольшая мощность, которую надежно отключает выключатель в режиме КЗ без механического повреждения и оплавления контактов. Ток динамической стойкости — это наибольшее значение амплитуды полного тока КЗ, который выключатель выдерживает во включенном положении без повреждений, препятствующих его дальнейшей работе. Ток термической стойкости — это такой ток, при протекании которого в течение времени t,r температура токоведущих частей выключателя не должна превышать допустимую для кратковременного режима работы. Время отключения выключателя с приводом представляет промежуток времени от подачи команды на отключение до момента погасания дуги на всех полюсах. Оно равно сумме собственного времени отключения выключателя с приводом tc.в. и времени горения дуги, т. е. tоткл. Собственное время отключения представляет отрезок времени от момента подачи импульса тока на отключающую катушку привода выключателя до момента расхождения дугогасительных контактов. Время горения дуги — это промежуток времени от начала расхождения дугогасительных контактов до момента погасания дуги на всех полюсах. Технические решения в области производства высоковольтных выключателей направлены на повышение параметров и уменьшение габаритов выключателей за счет применения более качественных изоляционных материалов и эффективных способов гашения дуги.

  • Назад
  • Вперед

Вакуумные выключатели

Рисунок 2 – Конструкция вакуумного выключателя

Принцип действия вакуумного выключателя основывается на высокой диэлектрической прочности вакуума и его диэлектрических свойствах. В момент размыкания контактов в промежутке между ними возникает дуга за счет испарения металла с их поверхности. При переходе тока через ноль вакуум восстанавливает диэлектрические свойства и дуга больше не возникает.

Рисунок 3 – Принцип работы вакуумного выключателя

Преимущества:

  • Простота конструкции и ремонта
  • Возможность работы не только в горизонтальном положении
  • Надежность и длительный срок эксплуатации
  • Компактность
  • Низкая пожароoпасность

Недостатки:

  • Небольшой ресурс при КЗ
  • Опасность возникновения коммутационных перенапряжений
  • Высокая стоимость

Классификация высоковольтных выключателей

По способу гашения дуги

§ Элегазовые выключатели (баковые и колонковые);

§ Вакуумные выключатели;

§ Масляные выключатели (баковые и маломасляные);

§ Воздушные выключатели.

По назначению

§ Сетевые выключатели на напряжения от 6 кВ и выше, применяемые в электрических цепях (кроме цепей электрических машин и электротермических установок) и предназначенные для пропускания и коммутирования тока в нормальных условиях работы цепи, а также для пропускания в течение заданного времени и коммутирования тока в заданных ненормальных условиях, таких как условия короткого замыкания

§ Генераторные выключатели на напряжения от 6 до 20 кВ, применяемые в цепях электрических машин (генераторов, синхронных компенсаторов, мощных электродвигателей) и предназначенные для пропускания и коммутаций тока в нормальных условиях, а также в пусковых режимах и при коротких замыканиях.

§ Выключатели на напряжение от 6 до 220 кВ для электротермических установок, применяемые в цепях крупных электротермических установок (например, сталеплавильных, руднотермических и других печей) и предназначенные для пропускания и коммутаций тока в нормальных условиях, а также в различных эксплуатационных режимах и при коротких замыканиях.

§ Выключатели специального назначения.

По виду установки

§ Опорные, то есть имеющие основную изоляцию на землю опорного типа.

§ Подвесные, то есть имеющие основную изоляцию на землю подвесного типа.

§ Настенные, то есть укрепленные на стенах закрытых распредустройств.

§ Выкатные, то есть имеющие приспособления для выкатки из ячеек распредустройств.

§ Встраиваемые в комплектные распределительные устройства.

По категориям размещения и климатическому исполнению

§ пять категорий размещения (вне и внутри помещений с различными условиями обогрева и вентиляции);

§ шесть климатических исполнений (У, ХЛ, ТВ, ТС, Т и О) в зависимости от географического места установки.

Общее устройство и принцип действия воздушных выключателей

В воздушных выключателях (ВВ) энергия сжатого воздуха используется и как движущая сила, перемещающая контакты, и как дугогасящая среда. Принцип действия дугогасительного устройства (ВВ)заключается в том, что дуга, образующаяся между контактами, подвергается интенсивному охлаждению потоком сжатого воздуха, вытекающего в атмосферу. При прохождении тока через ноль температура дуги падает и сопротивление промежутка увеличивается. Одновременно происходит механическое разрушение дугового столба и вынос заряженных частиц из промежутка.

ВВ конструктивно подразделяются на:

§ Выключатель с открытым отделителем

§ Выключатель с газонаполненным отделителем

§ Выключатель с камерами в баке со сжатым воздухом

Общее устройство и принцип действия элегазовых выключателей

Изолирующей и гасящей средой выключателей служит гексофторид серы SF6 (элегаз). Выключатели представляют собой трехполюсный аппарат, полюсы которого имеют одну (общую) раму и управляются одним приводом либо каждый из трех полюсов выключателей имеет собственную раму и управляется своим приводом (выключатель с пополюсным управлением).

Принцип работы аппаратов основан на гашении электрической дуги (возникающей между расходящимися контактами при отключении тока) потоком элегаза.

Источников возникновения потока газа – два :

§ повышение давления в одной из заполненных газом полостей дугогасительного устройства, обусловленное уменьшением ее замкнутого объема, возможность истечения газа из которой в зону расхождения дугогасительных контактов появляется непосредственно перед их размыканием

§ повышение давления газа в этой же полости вследствие его расширения под действием тепловой энергии самой электрической дуги.

Первый источник превалирует при отключении малых токов, а второй – больших.

Полюс выключателя

Для колонкового исполнения, полюс представляет собой вертикальную колонну, состоящую из двух (и более) изоляторов, в верхнем из которых размещено дугогасительное устройство (ДУ), а нижний – служит опорой ДУ и обеспечивает ему требуемое изоляционное расстояние от заземленной рамы. Внутри опорного изолятора размещена изоляционная штанга, соединяющая подвижный контакт ДУ с приводной системой аппарата.

Для бакового исполнения, полюс представляет собой металлический цилиндрический бак на котором установлены два изолятора, образующие высоковольтные вводы выключателя. ДУ в таком выключателе размещено в заземленном металлическом корпусе.

Для комбинированного исполнения, полюс представляет собой металлический корпус в виде сферы, на котором установлены фарфоровые изоляторы, образующие высоковольтные вводы выключателя, в одном из которых размещено дугогасительное устройство, а в другом встроенные трансформаторы тока.

В верхней части изолятора обычно устанавливается фильтр — поглотитель влаги и продуктов разложения элегаза под действием электрической дуги. Фильтрующим элементом в нем служит активированный адсорбент – синтетический цеолит NAX.

Также на всех современных выключателях установлен предохранительный клапан – устройство с тонкостенной мембраной, разрывающейся при давлении возникающем при внутреннем коротком замыкании, но не достигающем значения, при котором испытываются собственно изоляторы.

Дугогасительное устройство

Дугогасительное устройство предназначено обеспечивать быстрое гашение электрической дуги, образующейся между контактами выключателя при их размыкании. Разработка рациональной и надежной конструкции дугогасительного устройства представляет значительные трудности, так как процессы, происходящие при гашении электрической дуги, чрезвычайно сложны, недостаточно изучены и обусловливаются многими факторами, предусмотреть которые заранее не всегда представляется возможным. Поэтому окончательная разработка дугогасительного устройства может считаться завершенной лишь после его экспериментальной проверки.

Современные выключатели оснащены дугогасительным устройством автокомпрессионного типа, которые демонстрируют свои расчетные преимущества при отключении больших токов.

ДУ содержит неподвижную и подвижную контактные системы, в каждой из которых имеются главные контакты и снабженные элементами из дугостойкого материала дугогасительные контакты. Главный контакт неподвижной системы и дугогасительный подвижной – розеточного типа, а главный контакт подвижной системы и дугогасительный неподвижной – штыревые.

Подвижная система содержит, кроме главного и дугогасительного контактов, связанную с токовым выводом ДУ неподвижную токоведущую гильзу; поршневое устройство, создающее при отключении повышенное давление в подпоршневой полости, и два фторопластовых сопла (большое и малое), которые направляют потоки газа из зоны повышенного давления в зону расхождения дугогасительных контактов. Большое сопло, кроме того, препятствует радиальному смещению контактов подвижной системы относительно контактов неподвижной, поскольку никогда не выходит из направляющей втулки главного неподвижного контакта.

Главный контакт подвижной системы представляет собой ступенчатую медную гильзу, узкая часть которой адаптирована к входу в розеточный главный контакт неподвижной системы, а широкая часть имеет два ручья, в которых размещены токосъемные (замкнутые проволочные) спирали, постоянно находящиеся в контакте с охватывающей их неподвижной токоведущей гильзой.

Газовая система

Газовая система аппаратов включает в себя:

§ клапаны автономной герметизации (КАГ) и заправки колонн;

§ коллектор, обеспечивающий во время работы аппарата связь газовых полостей колонн между собой и с сигнализатором изменения плотности элегаза;

§ сам сигнализатор, представляющий собой стрелочный электроконтактный манометр с устройством температурной компенсации, приводящим показания к вели-чине давления при температуре 20ºС;

§ соединительные трубки с ниппелями и уплотнениями.

Сигнализатор изменения плотности элегаза (датчик плотности) имеет три пары контактов, одна из которых, замыкающаяся при значительном снижении плотности элегаза из-за его утечки, предназначена для подачи сигнала (например, светового) о необходимости дозаправки колонн; а две других, размыкающихся при недопустимом падении плотности элегаза, предназначены для блокирования управления выключателем или для автоматического отключения аппарата с одновременной блокировкой включения (что определяется проектом подстанции).

Привод

Приводы выключателей обеспечивают управление выключателем — включение, удержание во включенном положении и отключение. Вал привода соединяют с валом выключателя системой рычагов и тяг. Привод выключателя должен обеспечивать необходимую надежность и быстроту работы, а при электрическом управлении — наименьшее потребление электроэнергии.

В элегазовых выключателя применяют два типа приводов:

Пружинный привод:

§ аккумулятором энергии является комплект винтовых цилиндрических пружин

§ управляющим органом является кинематическая система рычагов, кулачков и валов.

Пружинно-гидравлический привод:

§ аккумулятором энергии является комплект тарельчатых пружин

§ управляющим органом является гидросистема.

Требования к выключателям

Выключатель является самым ответственным аппаратом в высоковольтной системе, при авариях он всегда должен обеспечивать четкую работу. При отказе выключателя авария развивается, что ведет к тяжелым разрушениям и большим материальным потерям, связанных с недоотпуском электроэнергии, прекращением работы крупных предприятий.

В связи с этим основным требованием к выключателям является особо высокая надежность их работы во всех возможных эксплуатационных режимах. Отключение выключателем любых нагрузок не должно сопровождаться перенапряжениями, опасными для изоляции элементов установки. В связи с тем, что режим короткого замыкания для системы является наиболее тяжелым, выключатель должен обеспечивать отключение цепи за минимально возможное время.

Общие требования к конструкциям и характеристикам выключателей устанавливается стандартами:

§ ГОСТ Р52565-2006 «Выключатели переменного тока на напряжение от 3 до 750 кВ. Общие технические условия.»

§ ГОСТ 12450-82 «Выключатели переменного тока высокого напряжения. Отключение ненагруженных линий».

§ ГОСТ 8024-84 «Допустимые температуры нагрева токоведущих элементов, контактных соединений и контактов аппаратов и электротехнических устройств переменного тока на напряжение свыше 1000 В.»

§ ГОСТ 1516.3-96 «Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции».

Вывод выключателя для ревизии и ремонта связан с большими трудностями, так как приходится либо переходить на другую схему распредустройства, либо просто отключать потребителей. В связи с этим выключатель должен допускать возможно большее число отключений коротких замыканий без ревизии и ремонта. Современные выключатели могут отключать без ревизии до 15 коротких замыканий при полной мощности отключения.

21. Токоограни́чивающий реа́ктор — электрический аппарат, предназначенный для ограничения тока короткого замыкания. Включается последовательно в схему и работает как индуктивное дополнительное сопротивление, уменьшающее ток при коротком замыкании, что увеличивает устойчивость генераторов и системы в целом.

Применение

При коротком замыкании ток в цепи значительно возрастает по сравнению с током нормального режима. В высоковольтных сетях токи короткого замыкания могут достигать таких[каких?

] величин, что подобрать установки, которые смогли бы выдержать электродинамические силы, возникающие вследствие протекания этих токов, не представляется возможным. Для ограничения тока короткого замыкания и применяют токоограничивающие реакторы.

Масляные выключатели

Рисунок 4 – Конструкция масляного выключателя

В дугогасительных устройствах масляных выключателей гашение дуги происходит при помощи ее эффективного охлаждения в потоке газа и пара, вырабатываемого при разложении и испарении масла

Преимущества:

  • Надежность
  • Простота конструкции и эксплуатации
  • Прочность

Недостатки:

  • Большие габариты
  • Пожароопасность
  • Сложность при установке

Воздушные выключатели

Рисунок 5 – Конструкция воздушного выключателя

Принцип работы воздушного выключателя состоит в гашении дуги с помощью скоростного потока сжатого воздуха, направляемого в дутьевые каналы. Под действием воздушного потока дуга растягивается и направляется в дутьевые каналы, где окончательно гасится.

Преимущества:

  • Высокая скорость срабатывания
  • Высокая пожаробезопасность
  • Большой срок службы

Недостатки:

  • Высокая стоимость оборудования и установки(компрессоры, ресиверы и т.д.)
  • Необходимость регулярного обслуживания

Выключатели воздушные

Для гашения дуги в выключателях воздушного типа используется сжатый воздух под давлением 2-4 Мпа. Дугогасительное устройство и токоведущие части изолируются с помощью фарфора и других аналогичных материалов. Воздушные выключатели конструктивно различаются между собой в зависимости от таких факторов, как номинальное напряжение, способ подачи сжатого воздуха и других.

Устройства высокого номинального тока, аналогично маломасляным выключателям, оборудованы главным и дугогасительным контурами. При включении основной ток попадает на главные контакты, расположенные открыто. После отключения они размыкаются первыми и далее ток попадает уже на дугогасительные контакты, расположенные в другой камере. Непосредственно перед их размыканием из резервуара в камеру осуществляется подача сжатого воздуха, гасящего дугу, в продольном или поперечном направлении.

В отключенном положении между контактами создается изоляционный зазор необходимых размеров. С этой целью контакты разводятся на достаточное расстояние. Выключатели для внутренней установки рассчитаны на ток до 20 тыс. ампер и напряжение 10-15 кВ. Они имеют отделитель открытого типа, после отключения которого сжатый воздух перестает поступать в камеры и происходит замыкание дугогасительных контактов.

Типовая конструктивная схема воздушного выключателя состоит из дугогасительной камеры, резервуара со сжатым воздухом, главных контактов, шунтирующего резистора, отделителя и емкостного делителя напряжения на 110 кВ, обеспечивающего два разрыва на фазу. В выключателях открытой установки, рассчитанных на напряжение 35 кВ, вполне достаточно одного разрыва на фазу.

Выключатели нагрузки

Выключатель нагрузки — высоковольтный коммутационный аппарат, который занимает промежуточное положение между разъеденителем и выключателем по уровню допустимой нагрузки комутационных токов. Способен отключать без повреждения как номинальные нагрузочные токи, так и сверхтоки при аварийных режимах. Выключатель нагрузки допускает коммутацию номинального тока, но не рассчитан на разрыв токов КЗ.

По принципу гашения дуги выключатели нагрузки классифицируются:

  • Автогазовые(самый распространенный тип)
  • Вакуумные
  • Элегазовые
  • Воздушные
  • Электромагнитные

В распределительных сетях наиболее распространены конструкции выключателей нагрузки (ВНР, ВНА, ВНБ) с гасительными устройствами газогенерирующего типа.

Рисунок 6 – Выключатель нагрузки с гасительными устройствами газогенерирующего типа (BH) а – общий вид выключателя; б – гасительная камера

Как видно по рисунку, устройство основано на элементах трехполюсного разъединителя для внутренней установки. На опорных изоляторах разъединителя укреплены гасительные камеры. Но привод разъеденителя изменен для того, чтобы обеспечить достаточную скорость срабатывания при включении и отключении.

В положении «включено» ножи входят в гасительные камеры. Контакты разъединителя и скользящие контакты гасительных камер замкнуты. При отключении тока сначала отключаются контакты разъединителя, затем ток смещается через вспомогательные ножи в гасительные камеры. После этого размыкаются контакты в камере. Зажигаются дуги, которые гасятся в потоке газов, являющихся продуктами разложения вкладышей из оргстекла, находящихся в камере. В положении «отключено» вспомогательные ножи находятся вне гасительных камер, обеспечивая достаточные изоляционные разрывы.

Высоковольтные выключатели. Классификация и основные параметры.

ВВ служат для включения и отключения высоковольтной цепи. В нормально не нормально и аварийном режимах.

К ВВ предъявляются следующие требования:

1 надежность в работе

2 минимальное время отключения цепи

3 малые габариты и вес

4 удобство безопасность монтажа и эксплуатации

5 возможность использования автоматического повторного включения.

Надежность выключателя определяет надежность работы эл.устновки и даже всей системы электроснабжения.

Минимальное время отключения ( быстродействие) снижает термическое действие тока КЗ, а также опасность распространения аварии на другие установки.

По принципу гашения дуги и роду дугогасительной среды выключатели делятся на: масляные, воздушный, электромагнитные, элегазовые, вакуумные.

В настоящее время большая часть используется масляные выключатели, но они уже заменяются вакуумными или элегазовыми выкл. Воздушные и электромагнитные не получили распространения на ЖД. В масялных выключателях гашении дуги происходит в масле.

Масляные выключатели

подразделяются:
1
многообъемные ( в них масло используется в качестве дугогасительной среды и в качестве изоляции)
2
малообъемные (масло используется только для гашения дуги)

Воздушные выключатели –

гашении дуги происходит струей сжатого воздуха.

Электромагнитных выключателях

гашение происходит в воздушной среде, но перемещение дуги осуществляется в электромагнитным полем.

В элегазовых

выключателях гашении дуги происходит в среде шестифтористой серы.

В вакуумных

выключателях гашении осуществляется в вакууме.

Высоковольтные выключатели классифицируются:

По числу фаз(1,3)

По месту установки (внутренняя или наружная)

По быстродействию(до 0,08 быстродействующее, до 0,12 ускоренного действия, до 0,25 не быстродействующие)

Основные параметры ВВ:

1-Uн

номинальное напряжении (это линейное напряжении? которое определяет качество и размеры изоляционных частей выключателя и их габаритов)

2- Iн

номинальный ток(характеризует длительную работу выключателя без перегрева токоведущих частей и контактов и определяет их размеры, но не ВВ)

3-Iн.откл

. номинальный ток отключения (это наибольший ток который надежно отключает выключатель при Uн и заданном цикле работ)

4-

Это номинальное мощность отключения — мощность которую надежно отключает выключатель в режиме КЗ без механических повреждений и оплавления контактов.

5-iуд .макс iпрс.ск

– это наибольшее значение амплитуды полного тока КЗ. Которая выключатель выдерживает во включенном положении без повреждения и препятствии его дальнейшее работе.

6-it-

предельный ток термической стойкости, это наибольшее среднеквадратическое значение тока кз протекающее через выключатель за определенный отрезок времени t в течении которого температура нагрева токоведущих частей не вызовет повреждений, препятв. дальней работе выключателя.

7-tв

–время отключения выключателя , tв=tсв+tд это промежуток времени от подачи команды на отключении до момента погасания дуги.

8- tсв

собственное время срабатывания выключателя , это промежуток времени от подачи команды на отключении до начала расхождения контактов.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]