Если вы рассмотрите печатную плату даже самого простого электронного устройства, то обязательно увидите конденсатор, а чаще всего встретите множество этих элементов. Присутствие этих изделий на различных электронных схемах объясняется свойствами данных радиоэлементов, широким диапазоном функций, которые они выполняют.
В настоящее время промышленность поставляет на рынок конденсаторную продукцию различных видов (рис. 1). Параметры изделий варьируются в широких пределах, что позволяет легко подобрать радиодеталь для конкретной цели.
Рис. 1. Распространённые типы конденсаторов
Рассмотрим более подробно конструкции и основные параметры этих вездесущих радиоэлементов.
Что такое конденсатор?
В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.
Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.
Электроемкость
На предыдущих уроках мы знакомились с элементарными электрическими понятиями и принципами, в частности, мы говорили об электризации – явлении перераспределения заряда. Разговор о более глубоком исследовании этого явления начнем с опыта.
Изначально пусть нам даны две разные по размеру изолированные банки, подключенные к электроскопу (рис. 1):
Рис. 1
Теперь к каждой из банок поднесли одинаково заряженное тело. Естественно, с каждой банкой произойдет процесс электризации, и стрелки обоих электроскопов разойдутся. Однако оказалось, что электроскоп большей банки показал меньшее отклонение (рис. 2):
Рис. 2
Данный опыт доказывает, что различные тела электризуются одним и тем же зарядом по-разному (конкретно большая банка одним и тем же зарядом зарядилась до меньшего потенциала). И существует некоторая величина, которая показывает способность тела накапливать электрический заряд. Собственно, о ней и пойдет речь.
Определение. Электроемкость (емкость) – величина, равная отношению заряда переданного проводнику к потенциалу этого проводника.
Здесь: – емкость; – переданный заряд; – потенциал, до которого зарядился проводник.
Конструкция и принцип работы
Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.
Рис. 2. Модель простейшего конденсаторного устройства
Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.
При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.
Единицу измерения ёмкости принятоназывать фарадой (Ф). 1 F – очень большая величина, поэтому на практике часто применяют кратные величины: микрофарады (1 мкФ = 10-6 F), нанофарады ( 1 нФ = 10-9 F = 10-3 мкФ), пикофарады (1 пкФ = 10-12 F = 10-6 мкФ). Очень редко применяют величину милифараду (1 мФ = 10-3 Ф).
Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.
Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.
В качестве диэлектриков применяют:
- бумагу;
- полипропилен;
- тефлон;
- стекло;
- полистирол;
- органические синтетические плёнки;
- эмаль;
- титанит бария;
- керамику и различные оксидные материалы.
Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.
Рис. 3. Конструкция радиального электролитического конденсатора
Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.
На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.
Рисунок 4. Обозначение полярности выводов
Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.
Общая концепция
Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.
Принцип работы
Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.
Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.
Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.
Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.
Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.
По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.
Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.
А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.
Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.
Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.
Конденсатор и цепь постоянного тока
Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.
По мере зарядки, лампочка начинает тусклее светиться.
Лампочка затухает при полной зарядке.
Постоянный электрический ток не проходит через конденсатор только после его зарядки.
Цепь с переменным током
А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.
Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.
Свойства
Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.
В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.
Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.
Рис. 5. Пусковой конденсатор с проводами
В чем отличие полярного и неполярного?
Неполярные допускают включение конденсаторов в цепь без учета направления тока. Элементы применяются в фильтрах переменных источников питания, усилителях высокой частоты.
Полярные изделия подсоединяют в соответствии с маркировкой. При включении в обратном направлении прибор выйдет из строя или не будет нормально работать.
Полярные и неполярные конденсаторы большой и малой ёмкости отличаются конструкцией диэлектрика. В электролитических конденсаторах, если оксид наносится на 1 электрод или 1 сторону бумаги, пленки, то элемент будет полярным.
Модели неполярных электролитических конденсаторов, в конструкциях которых оксид металла нанесли симметрично на обе поверхности диэлектрика, включают в цепи с переменным током.
У полярных на корпусе присутствует маркировка положительного или отрицательного электрода.
Основные параметры и характеристики
Ёмкость.
Важным параметром конденсатора является его номинальная ёмкость. Для плоского конденсатора справедлива формула:
С = (ε*ε0*S) / d,
где ε – диэлектрическая проницаемость диэлектрика, S – размеры обкладок (площадь пластин), d – расстояние между пластинами (обкладками).
Реальная емкость отдельных элементов обычно невелика, но можно получить конструкцию ёмкостью в несколько фарад, если параллельно соединить огромное число обкладок. В этом случае реальная ёмкость равняется сумме всех ёмкостей обкладок.
Максимальные емкости некоторых конденсаторов могут достигать нескольких фарад.
Удельная ёмкость.
Величина, характеризующая отношение ёмкости к объёму или к массе радиодетали. Данный параметр важен в микроэлектронике, где размеры деталей очень важны.
Номинальное напряжение.
Одной из важных электрических характеристик является номинальное напряжение – значение максимальных напряжений, при которых конденсатор может работать без потери значений других его параметров. При превышении критической величины равной напряжению пробоя происходит разрушение диэлектрика. Поэтому номинальное напряжение подбирают заведомо большее любых возможных максимальных амплитуд синусоидального тока в цепи конденсатора.
Существуют характеристики, такие как тангенс угла потерь, температурный коэффициент ёмкости, сопротивление утечки, диэлектрическая абсорбция и др., которые интересны только узким специалистам, а их параметры можно узнать из специальных справочников.
Поведение конденсатора в цепи переменного тока
Если говорить строго, то через конденсатор не проходит ни постоянный, ни переменный ток, так как между обкладками находится изолятор, в котором свободные электрические заряды двигаться не могут.
Включение конденсатора в цепь постоянного тока равносильно разрыву этой цепи. Что же касается переменного тока, то он будет протекать по цепи, в которую включен конденсатор, благодаря периодическому заряду и разряду этого конденсатора. Действительно, когда происходит заряд конденсатора, то электрические заряды, например электроны, на одной обкладке накапливаются, а с другой обкладки уходят. При этом они, конечно, двигаются по соединительным проводам, подключенным к обкладкам конденсатора. Такое же движение зарядов, только в противоположном направлении, происходит и при разряде конденсатора.
Если включить конденсатор в цепь переменного тока, то он будет периодически заряжаться то в одной полярности, то в противоположной. Это значит, что электроны будут накапливаться то на одной, то на другой обкладке, и каждый раз при заряде и разряде свободные электроны будут двигаться по цепи, в которую включен конденсатор, не попадая, однако, в изолятор, включенный между обкладками. А поскольку под действием переменного напряжения в цепи конденсатора двигаются заряды, то мы считаем, что конденсатор пропускает переменный ток, хотя и в этом случае заряды не проходят через изолятор.
Конденсатор влияет на величину переменного тока в цепи, и поэтому (по аналогии с законом Ома) его часто рассматривают как сопротивление. Это так называемое емкостное сопротивление обозначается буквой хс и так же, как и обычное сопротивление, измеряется в омах. Величина хс зависит от частоты переменного тока и от емкости С конденсатора: с уменьшением емкости конденсатора, так же как и с уменьшением частоты переменного тока, емкостное сопротивление конденсатора увеличивается (рис. 80, 81, лист 87). Эту зависимость удобно записать в виде простой формулы:
Смысл этой формулы весьма прост: чем меньше емкость С, тем меньше зарядов будет двигаться к обкладкам при каждом заряде и разряде конденсатора; чем меньше частота переменного тока, тем реже будет заряжаться и разряжаться конденсатор. Отсюда следует, что с уменьшением f и С уменьшается ток в цепи, или, иными словами, растет сопротивление конденсатора.
Этот вывод имеет огромное практическое значение. Так, например, если нам понадобится включить в цепь конденсатор с очень маленьким емкостным сопротивлением, то емкость этого конденсатора нужно будет выбирать с учетом частоты переменного тока в цепи. Для высоких частот можно будет взять конденсатор небольшой емкости, а вот для низких частот емкость конденсатора придется взять большой. Это хорошо иллюстрируется простым примером. На частоте 100 кгц конденсатор емкостью 100 пф обладает емкостным сопротивлением хс=16 ком. При уменьшении частоты в 1000 раз, то есть на частоте 100 гц, сопротивление конденсатора возрастет в 1000 раз и станет равным 16 000 ком (16 Мом). Для того чтобы при уменьшении частоты емкостное сопротивление не изменилось, нужно увеличить емкость конденсатора. Сопротивление 16 ком на частоте 100 гц будет иметь конденсатор емкостью 100 000 пф (0,1 мкф).
Из приведенной выше формулы следует также, что уменьшение емкости конденсатора связи Ссв (лист 85) приведет к росту сопротивления этого конденсатора, а следовательно, к уменьшению тока в цепи антенны. Поэтому емкость Ссв нельзя брать слишком малой.
Сказанное можно пояснить еще иначе. Конденсатор связи и колебательный контур Lк Ск можно рассматривать как делитель напряжения, к которому приложена э. д. с, действующая между зажимами А («антенна») и З («земля»). Мы не будем пока говорить о том, чему равно сопротивление колебательного контура — даже без этого ясно: чем больше емкостное сопротивление конденсатора связи, тем меньшая часть э. д. с. будет действовать на нижней части делителя — на контуре и подключенной к нему цепи детектор — телефон.
Источник
Классификация
Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.
По данному признаку различают следующие типы изделий:
- вакуумные;
- с воздушным диэлектриком;
- радиоэлементы, в которых диэлектриком является жидкость;
- с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
- модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
- масляные конденсаторы постоянного тока;
- электролитические;
- категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
- твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.
В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.
Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:
- постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
- переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
- класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.
Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.
Рис. 6. Конденсаторы общего назначения
Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:
- импульсные;
- пусковые;
- высоковольтные (см. рис. 7);
- помехоподавляющие,
- дозиметрические и др.;
Рис. 7. Высоковольтные конденсаторы
Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.
Виды конденсаторов
Бумажные и металлобумажные конденсаторы
У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.
Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.
Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.
Электролитические конденсаторы
В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.
Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.
Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.
В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.
К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.
Алюминиевые электролитические конденсаторы
В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),
- работают корректно только на малых частотах;
- имеют большую емкость.
Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.
Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.
Танталовые электролитические конденсаторы
Это вид электролитического конденсатора, в котором металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).
- высокая устойчивость к внешнему воздействию;
- компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
- меньший ток утечки по сравнению с алюминиевыми конденсаторами.
Полимерные конденсаторы
В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.
Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.
Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.
Маркировка
Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:
- К – конденсатор;
- Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
- На третьем месте стоял символ, обозначающий особенности исполнения.
В данной системе маркировки иногда первую букву опускали.
В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.
Рис. 8. Маркировка конденсаторов
- Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
- от 1000 до 999999 пФ – в нанофарадах: n180;
- от 1 до 999 мкФ – в микрофарадах: 2μ5;
- от 1000 до 999999 мкФ – в миллифарадах: m150;
- ёмкость, больше значения 999999 мкФ, указывают в фарадах.
Напряжение на электроприборе
Одним из самых важных параметров рассматриваемого нами устройства является пробивное напряжение — разность значений потенциалов двух проводников конденсатора, приводящая к электрическому пробою слоя диэлектрика. Максимальное напряжение, при котором не происходит пробоя устройства, определяется формой проводников, свойствами диэлектрика и его толщиной. Условия работы, при которых напряжение на обкладках электроприбора близко к пробивному, недопустимы. Нормальное рабочее напряжение на конденсаторе меньше пробивного в несколько раз (в два-три раза). Поэтому при выборе следует обратить внимание на номинальное напряжение и емкость. В большинстве случаев значение этих величин указывается на самом устройстве или в паспорте. Включение конденсатора в сеть на напряжение, превышающее номинальное, грозит его пробоем, а отклонение значения емкости от номинального может привести к выбросу в сеть высших гармоник и перегреву устройства.
Соединение конденсаторов
Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.
Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )
Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:
- https://asutpp.ru/kalkulyator-rascheta-posledovatelnogo-soedineniya-kondensatorov.html
- https://asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-kondensatorov.html
Применение
Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:
- построение цепей обратной связи, фильтров, колебательных контуров;
- использование в качестве элемента памяти;
- для компенсации реактивной мощности;
- для реализации логики в некоторых видах защит;
- в качестве датчика для измерения уровня жидкости;
- для запуска электродвигателей в однофазных сетях переменного тока.
С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.