Сварочный инвертор переменного и постоянного тока

Системы электроснабжения, в которых применяются инверторы.

  • Система бесперебойного питания для дома, либо промышленного объекта при пропадании основной сети.
  • Система бесперебойного питания с солнечными батареями или другим альтернативным источником электроэнергии. В такой системе инвертор/бесперебойник, должен иметь функцию приоритетного использования энергии от альтернативного источника (солнечные батареи, ветрогенератор), благодаря которой, сначала на ваши электроприборы поступает энергия от солнечных батарей, и только если её не хватает, будет «добор» электроэнергии из сети. Данная возможность позволит свести счета за электроэнергию к нулю.
  • Полностью автономная система электроснабжения, когда центральной сети нет вообще.
  • Путешествия, походы ит.д.

При одинаковой мощности инверторы могут существенно отличаться по возможностям и цене, например:

  • инверторы с модифицированной синусоидой (устаревшая технология, так как не всё оборудование может работать от таких инверторов)
  • инверторы с чистым синусом
  • высокочастотные
  • низкочастотные
  • без зарядного устройства
  • с зарядным устройством и автоматическим переключением сеть/инвертор (бесперебойник)
  • со встроенным стабилизатором или солнечным контроллером
  • гибридные инверторы
  • сетевые инверторы

Итак, что такое модифицированная синусоида и чистая синусоида

Модифицированный синус

Чистый синус

Это форма напряжения 220В на выходе инвертора. Инвертор должен иметь чистый синус, в противном случае, многие электроприборы и котлы отопления не будут работать.

Высокочастотные инверторы

Обычно это инверторы маленькой мощности, без зарядного устройства, с маленьким трансформатором, маленькими конденсаторами, небольшого размера, с низкой ценой. Так же, низкие надёжность и КПД данных устройств.

Чаще всего данные инверторы используются в автономных системах электроснабжения с маленьким потреблением.

Режимы работы инверторов

Режим работы Его особенности
Пусковой Мощность может на долю секунды 2-кратно превзойти номинальную величину инверторного преобразователя. Допускается для большинства устройств.
Продолжительный Мощность потребления соответствует номинальному значению инвертора.
Режим перегрузки Мощность потребления в 1,3 раза выше номинального значения. В среднем инверторные преобразователи способны функционировать в режиме перегрузки около получаса.

Низкочастотные инверторы

Низкочастотные инверторы работают на низкой частоте преобразования энергии от аккумуляторов, частота 50 Гц., которая соответствует частоте централизованной сети. На такой частоте работают, более менее большие и тяжёлые трансформаторы. Такой трансформатор является промежуточным буфером между электроникой инвертора и нагрузкой, что увеличивает надёжность инвертора.

На фото ниже инвертор TrippLite 6 кВт (внутри, вид сбоку, стандартный трансформатор справа)

У инвертора МАП HYBRID 6 кВт внутри (вид сверху, трансформатор «тор» слева). Тор имеет большее КПД чем у обычного трансформатора и меньше наводит помех. Так же у инверторов с тором ниже самопотребление электричества на холостом ходу.

Трансформатор занимает чуть менее половины корпуса приборов, увеличивая размер и вес низкочастотного инвертора, по сравнению, с высокочастотниками. Благодаря трансформатору возрастает мощность и надёжность инверторных систем.

Самые именитые и дорогие мировые бренды, из-за непревзойдённых параметров торов, используют в своих инверторах только низкочастотные трансформаторы в виде тора.

Применение инвертора на практике

Выбирая инвертор напряжения, следует помнить, что он поможет и освещение обеспечить при необходимости, и телевизор посмотреть, и даже чайник вскипятить. Для тех, кто вынужден длительное время проводить в дороге, автомобильный инвертор своими руками незаменимое устройство, позволяющее пользоваться обычными бытовыми приборами в поездках.

В большинстве случаев инверторы напряжения используются как запасные фазные источники электропитания. Если ток в розетке пропадает, приборы тут же начинают работать от аккумулятора в обычном режиме. Подача электроэнергии восстановилась — инвертор переходит к зарядке аккумулятора, при этом, не мешая приборам нормально работать от сети. При этом он беспрерывно контролирует ситуацию.

Какой инвертор выбрать на 12-ть, 24 или 48 Вольт

Аккумуляторные батареи могут быть 2-х, 6-ти и 12-ти вольтовые, а коммутировать их можно последовательно либо параллельно, либо последовательно-параллельно, наращивая их общую ёмкость. Чаще всего инверторы выпускают рассчитанные на 12 В или на 24 В или на 48 В. Очень редко можно встретить модели на 96 В, т.к. такое напряжение уже считается опасным. Напряжение 12 В можно встретить в бортовой сети автомобиля, 24 В – в автобусах и на яхтах. В принципе, любое из этих напряжений может работать с инвертором, для бесперебойного питания электрооборудования дома. Однако низкое напряжение не позволяет технически получить большую мощность. Так, например, из 12-и вольт невозможно получить мощность более 3-х кВт, из 24-х вольт – более 9 кВт, а из 48-и В – более 18 кВт. Понятно, что высокочастотные инверторы обычно делаются на 12 В и мощностью до 3-х кВт (и рассчитаны они на применение в автомобилях), а мощные низкочастотные инверторы обычно представлены моделями на 24 или 48 В с мощностью от 3 кВт и выше (и рассчитаны они на применение в доме или здании). Это в среднем. Но бывают и исключения, когда например, высокочастотные инверторы, прежде всего за счёт своей низкой цены, пытаются занять свою нишу в домашнем сегменте или наоборот, бесперебойники, сделанные по низкочастотной технологии с тором мощностью всего 900 Вт, имеющие относительно большой вес и цену, пытаются занять нишу в сегменте высокочастотных инверторов за счёт таких своих качеств, как надёжность, мощные зарядные возможности и широкий функционал.

Инверторы со встроенным стабилизатором

Что такое стабилизатор напряжения? Обычно это отдельное устройство, позволяющее в широком диапазоне, и с хорошей точностью, выравнивать напряжение промышленной сети, если оно очень низкое или высокое. Например, качественный стабилизатор, позволяет поднять до 220 В сетевое напряжение, даже если в сети всего 120 В. Или наоборот, понизить сетевое напряжение, допустим с 270 В, до тех же 220 В. Качественные стабилизаторы выполнены на долговечных и быстродействующих симисторах, имеют минимум 8 переключающихся порогов. Ну а теперь посмотрите на характеристики встроенной в инвертор функции стабилизатора. Обычно это только 2 или 3 порога, используются не симисторы, а реле. В итоге, малая долговечность и узкий диапазон выравнивая сетевого напряжения. И есть ещё одна неприятная особенность у инверторов со встроенным стабилизатором. Они мало подходят для использования в условиях автономии, то есть там, где нет сети вообще. Ведь даже имея хорошее встроенное зарядное устройство, они не могут заряжать аккумуляторы от большинства обычных бензо/дизель генераторов. Почему? Потому, что именно из-за встроенного стабилизатора, они требуют очень качественного и устойчивого напряжения на своём сетевом входе. Т.е. генератор должен быть дорогим и с большим запасом мощности (а такой стоит в несколько раз дороже обычных генераторов).

Почему же встроенный в инверторе стабилизатор так повышает его требования к качеству и мощности бензо/дизель или газо генератора? Посудите сами. Генератор при увеличении нагрузки, чтобы удержать напряжение в районе 220 В, автоматически прибавляет обороты. При снижении нагрузки – снижает обороты по той же причине. Теперь рассмотрим цепочку генератор – стабилизатор – инвертор – меняющаяся нагрузка. Допустим, что-то включили, например электрочайник мощностью 2 кВт. Нагрузка подастся на 220 В, проходящее через стабилизатор, от работающего генератора. Напряжение в первую долю секунды начнёт проваливаться. Как вы думаете – кто среагирует первым стабилизатор или генератор? Правильно, стабилизатор, так как генератор более инерционен, обороты мгновенно не поднимешь.

Итак, стабилизатор переключится на повышающую обмотку, чтобы компенсировать провал. Но затем этот провал всё же доходит и до генератора. Генератор со своей стороны тоже повысит напряжение. На это повышение снова среагирует стабилизатор и понизит порог, на стабилизатор опять среагирует генератор и т.д. Возникнет колебательный процесс, который может пойти в разнос. И тогда одно из двух – система будет аварийно отключаться, или, этот колебательный процесс быстро затухнет и всё войдёт в норму. Так вот всё почти мгновенно «устаканивается», в том случае, если генератор качественный и имеет большой запас мощности. Тогда он на чайник 2 кВт будет реагировать как на «муху залетевшую в окно», потому что тогда чайник не сможет раскачать его обороты. Но стоят такие генераторы слишком дорого.

Сварочный инвертор

Сварочный преобразователь

Величина сварочного тока

В первую очередь сварочный инвертор позволяет легко реализовать удобный режим работы. В устройства без труда внедряется режим Антизалипания (автоматическое выключение при коротком замыкании), присутствуют иные особенности. Сегодня утверждение о высокой стоимости сварочного инвертора утратило силу. Огромная часть моделей потребляет настолько мало энергии, что пригодна к использованию в домашних условиях. Желающим купить Ресанту порой сложно понять, сколько Вт потребуется для снабжения устройства энергией.

У сварщиков в противовес большей части техники принято по-другому подходить к измерению возможностей прибора. Известно, что для использования электрода установленной толщины полагается получить на выходе инвертора определённый ток. Эти значения, как правило, указываются в инструкции. К примеру, для «четвёрки» ток занимает значения 120 – 200 А. Это зажжёт дугу, не допуская шанса спалить все окончательно. Если попробуете ток поставить меньше, работу выполнить окажется попросту невозможно.

Итак, сварочный инвертор характеризуется конкретной областью рабочих токов, по которой мастер делает вывод о пригодности оборудования в определённом случае. Для домашнего применения не берут инструмент с током более 200 А. Этого хватит, чтобы использовать электроды на 5 мм. А сверху ограничивает мощность. В параметрах показатель не фигурирует, но значение вычисляется по типичной формуле. На каждом сварочном инверторе расположена табличка, где указывается, помимо тока, рабочее напряжение. Для читателей показано на картинке, как вычисляется мощность.

Это важный параметр, сварочный инвертор способен легко спалить проводку. У большинства приборов отмечается параметр рабочего цикла (на картинке показан в процентах), определяющий, сколько времени от общего занимает активная часть. У читателей сразу возникнет вопрос: сколько длится общий интервал. По общепринятым соглашениям считается, что он составляет 10 мин. Если на рисунке указано, что током 160 А варят 70% времени, это означает 7 мин. Потом полагается сделать 3-минутную паузу, дать оборудованию остыть.

Применение таблицы значений

Указанные характеристики не затрагивают собственно сварочный инвертор. Большая часть техники выдаёт настраиваемый ток. Но лишь сварочный инвертор позволяет сдвигать настройки чрезвычайно плавно. Если говорить подробно, сварка может идти постоянным током или переменным. В примере рассматривается инвертор первого рода. Это понятно по значку, расположенному левее продолжительности цикла в процентах (две прямые черты, нижняя пунктирная). Переменный ток массово применяется для сварки цветных металлов.

Постоянный ток или переменный

В отдельном случае применяется собственная технология. К примеру, алюминий часто варят током обратной полярности, что помогает удалять оксидную плёнку с поверхности. Электроды требуется просушивать, предлагаются отдельные рекомендации по применению флюса. Разработана масса технологий, и сварочный инвертор обычно реализует лишь их часть. Преимущественно подразумевается сварка постоянным током черных металлов. В прочих случаях нужно внимательно изучать литературу. Как говорилось выше, сварка цветных металлов ведётся и постоянным, и переменным током, причём важно правильно соблюсти полярность.

Подчёркиваем, что сварочный инвертор становится лишь технологией получения переменного или постоянного тока, необходимого для правильной работы электродов. За остальное отвечает уже мастер, определяющий, какого рода ток используется, где взять электроды, как правильно подключить. Ряд терминов, идущих рука об руку со сварочными работами:

  1. Дуговая сварка. Термин популярен в источниках. Означает, что в ходе сварочного процесс образуется дуга из ионизированного воздуха – ослепительное сияние, видимое при работах. Образующееся ударное повышение температуры позволяет без затруднений плавиться электроду (или проволоке). Иной вид сварки в гаражах не встречается.
  2. Слово полуавтомат подразумевает автоматическую подачу электрода (чаще проволоки), мастеру остаётся лишь идти вдоль шва с заданной скоростью. Полуавтомат вполне способен оказаться инвертором, это сложное оборудование, большинству не по карману.
  3. Обычно в системе обозначений подразумевается сварка черных металлов. Для этого применяются рядовые электроды, флюс обычно не нужен, как и среда инертного газа: приспособления служат, как правило, для защиты нежного цветного металла от агрессивного действия кислорода. Полярность используется прямая. Заземление подключается на чёрную клемму, а сварочный электрод на красную. Выше мы говорили, что для цветных металлов бывает с точностью до наоборот, но это уже тонкости, на которые обычный сварочный аппарат не рассчитан.

Пособие для сварщика

Какой ток использовать, описано в любом достойном справочном пособии для сварщиков. Настоятельно рекомендуем найти книгу и пользоваться в противовес мнению знакомых мастеров.

Инверторы с встроенным солнечным контроллером

Теперь посмотрим насколько правильно встраивать солнечный контроллер внутрь инвертора. Вообще, солнечный контроллер необходим чтобы можно было солнечные панели (некоторые называют их солнечными батареями) подключить к аккумуляторам, к тем самым, к которым подключён инвертор. Солнечный контроллер преобразует энергию от высокого напряжения солнечных панелей в более низкое напряжение аккумуляторов. Таких инверторов со встроенным солнечным контроллером не много. Но у такого решения есть плюсы – ведь цена такого решения несколько ниже и, кроме того, проводов подключения будет чуть меньше. Теперь посмотрим на минусы такого решения. Высококачественные и мощные солнечные контроллеры (имеющие КПД 98%, высокое входное напряжение и управление внешними нагрузками) довольно большие и внутрь инвертора их не вставишь. Посмотрите на разобранный солнечный контроллер КЭС Dominator 200/100.

Поэтому контроллеры заряда, встроенные в инверторы, как и встроенные стабилизаторы, несколько урезаны по своим возможностям.

Сравните на фото инвертор со встроенным солнечным контроллером (слева) и два полноценных отдельных солнечных контроллера. Отдельный контроллер по размеру это почти половина инвертора. Разница в функционале и параметрах у них тоже заметна.

Другой минус – в случае порчи солнечного контроллера, придётся отдавать в ремонт всё устройство, т.е. лишаться и инвертора. Равно как и в случае порчи инвертора, лишаться и контроллера.

В общем, самые дорогие и качественные брендовые инверторы никогда не содержат в себе ни стабилизаторов, ни солнечных контроллеров. Поэтому, само их наличие в инверторе, говорит о уровне изделия. Говорит о том, что ради рекламы присутствия эфемерных преимуществ или вроде бы, как бы, более низкой цены (по сумме якобы двух продуктов в одном), производитель готов идти на некий компромисс с реальной целесообразностью. Особенно это касается встроенного стабилизатора. Наш совет-приобретать инверторы с встроенным стабилизатором или со встроенным солнечным контроллером, можно при стеснении в средствах, и при условии их использования не в полной автономии, а как резервной системы.

Сетевой инвертор

Сетевой инвертор – это одновременно и инвертор и солнечный контроллер с технологией МРРТ. Но у сетевого инвертора совсем другая идеология, нежели чем у рассмотренного нами выше обычного, подключаемого к аккумуляторным батареям, высокочастотного инвертора со встроенным солнечным контроллером. Он отличается принципиально. Эта идеология имеет свои истоки от других условий стран Евро-зоны, США и др.

Вот так выглядит, например, сетевой инвертор мощностью 500 Вт. На первый взгляд ничего необычного. Только удивляет отсутствие клемм для подключения аккумуляторов.

Идеология сетевого инвертора – энергию, полученную от солнечных панелей (соединённых на ВЫСОКОЕ напряжение, обычно в диапазоне 200 – 600 В), преобразовать сразу в переменное ВЫСОКОЕ напряжение 220 В и сразу подавать её в промышленную сеть, синхронизируясь с ней. Так как напряжение на входе и на выходе высокое, можно обойтись без трансформаторов, что должно удешевлять сетевые инвертора (хотя они почему-то стоят раза в 2 дороже обычных батарейных инверторов).

Как используют сетевые инверторы за рубежом? Если нагрузка в доме большая, а солнечной энергии поступает немного, то она вся уходит на домашнее потребление. Если же нагрузки почти нет, и солнце в зените – тогда эта не используемая владельцем энергия закачивается в промышленную энергосеть. Т.е. его счётчик крутится в обратную сторону, сматывая показания. Кроме того, сетевой инвертор обходится и без аккумуляторных батарей! Иначе пришлось бы их, подсоединять к очень высокому напряжению (на линию между узлом солнечного контроллера и узлом инвертора), что весьма опасно. Получается, что вместо аккумуляторов задействуется огромная электросеть. В неё можно качать солнечную электроэнергию, выкручивая счётчик в большой минус, а потом, вечером, или гораздо позже, в зимний период, возвращать себе обратно то, что отдавали летом! Промышленная электросеть это гигантский неисчерпаемый аккумулятор, вечный и не имеющий потерь. Но, к сожалению, пока в России есть два фактора, которые сводят на нет все преимущества сетевых инверторов:

  1. У нас не разрешено частным лицам что-либо закачивать в сеть. И таких счётчиков (которые позволяют вычитать обратную энергию) больше нет. Причём многие современные счётчики эту энергию (которая подаётся обратно в сеть) приплюсуют к потреблённой, и счета за электричества увеличатся!
  2. Если в Европе электричество практически не отключают, и там зачастую можно не иметь резервную систему на аккумуляторах, то в России такие отключения и аварии не редкость.

Поэтому аккумуляторные батареи жизненно необходимы не только в случае полной автономии, но и для резерва, даже если сеть 220 В имеется. Хотим обратить Ваше внимание, что в случае отключения промышленного 220 В, сетевой инвертор не будет выдавать свои 220 В даже если светит солнце и энергии как бы в избытке. Его конструкция сделана так, что промышленное 220 В для него является опорным и ведущим. И, кроме того, по требованиям безопасности – чтобы когда ничего не подозревающий электрик отключит подачу сетевого 220 В и, допустим, приступит к ремонту сети голыми руками, – чтобы его не убило, сетевой инвертор не должен при этом продолжать генерировать 220 В. Поэтому, если электричество в сети исчезнет, а будет установлен только сетевой инвертор с солнечными панелями, то вы останетесь без электричества. Большие деньги затрачены, а резервного электроснабжения не будет. И так будет, пока регламент электросетей не изменят, пока у нас аварии электроснабжения не прекратятся, пока электричество не перестанут планово отключать…

Схема инвертора напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLнVT4«-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания в соответствующем направлении.

Режим работы схемы

Для изменения направления снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты. Однако, поскольку нагрузка активно-индуктивная, то не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности . Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания , в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать через LнRн уже в другую сторону.

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Работа схемы

Начиная с момента t5 iн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы и будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное , поэтому через LнRн протекал максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Гибридные инверторы

Что же такое гибридный инвертор (HYBRID)? Это вершина эволюции инверторов. Это и обычный, то есть батарейный, и сетевой инвертор, объединённые в один, то есть в гибрид!

Гибридный инвертор, как и сетевой инвертор, умеет синхронизироваться с промышленной сетью и подкачивать туда энергию как от аккумуляторов, так и от солнечных панелей с солнечным контроллером. Т.е. он умеет делать не только тоже, что и сетевой инвертор, но и больше. Например, «умощнять» сеть при перегрузках – при возникновении необходимости, он сможет приплюсовать к выделенной мощности сети мощность от аккумуляторов и/или от солнечного контроллера. Гибрид будет работать и при исчезновении в сети 220 В. Гибрид по вашему желанию может ограничить подкачку солнечной энергии только в домашнюю сеть или же и во внешнюю сеть. Т.е. проблема со счетчиками, плюсующими отданную энергию к счетам на оплату, снимается.

Гибрид накладывает свой синус на синус сети с чуть большей амплитудой и может перехватывать на себя всю нагрузку или часть нагрузки. Если в меню установлено разрешение подкачки пока напряжение на 1 аккумуляторе будет выше 12,7 В (что соответствует 100% заряда), то при отсутствии внешнего поступления энергии (например от Солнца), подкачка прекратится, и тогда далее всё будет питаться только от сети. Появится Солнце – снова продолжится подкачка, настолько, насколько позволит эта энергия солнца, или насколько израсходуют потребители.

Отметим, что аккумуляторы при наличии сетевого 220 В не расходуются и не портятся, хотя солнечная энергия подкачивается в сеть. Но можно и разрешить небольшой разряд аккумуляторов – это позволит подкачивать накопленное и вечером, правда ресурс аккумуляторных батарей тогда будет в небольшой степени сокращаться.

Подкачка необходимой энергии непосредственно в домашнюю сеть – на порядок лучше, чем автоматическое переключение потребителей с сети, на 220 В получаемые от аккумуляторов и солнечных панелей, не только потому, что в последнем случае расходуются, а значит портятся аккумуляторы, но и потому что частые переключения ведут к ускоренному износу внутреннего реле в обычном инверторе.

Наличие аккумуляторов как резерва, позволяет гибридным инверторам работать и при исчезновении 220 В в сети.

Ещё один плюс гибридов – только они могут обеспечить трёхфазное автономное или резервное напряжение. В этом случае используются три инвертора, каждый на свою фазу. Они связанны между собой дополнительными проводами для обеспечения синхронной работы со смещением фаз на 120 градусов. Естественно возможна и генерация всех трёх фаз от аккумуляторов, либо регенерация одной или двух исчезнувших фаз. А ведь если необходимо обеспечить питание трехфазных двигателей или трёхфазных насосов, без таких инверторов не обойтись.

Получается, что только гибридные инверторы это единственное идеальное решение для России.

Инвертор: что это такое вне сварочного процесса?

Помимо сварки, термин «инвертор» встречается и в других направлениях нашей жизни. Чтобы не перечислять все характеристики по моделям оборудования, проще сделать распределение по областям применения. Таким образом, понять, какие именно модели инвертора необходимы, понять будет куда проще.

1) Инверторы в отопительных котлах

В наше время котел является незаменимым элементом частного дома (большинства). Сложная автоматика требует постоянной подачи электричества, но от перебоев застраховаться невозможно. Для организации альтернативного источника энергии используется инвертор. Агрегат преобразует 12,24 и 48 В. стандартные 220 В.

Какие задачи выполняет инвертор в котлах:

  • альтернативный источник питания при перебоях подачи электричества с сети;
  • восстановление нормального вольтажа при падении напряжения в сети;
  • при отсутствии антифриза в теплоносителе, инвертор предотвращает замерзание;
  • защита платы управления от скачков напряжения в сети.

В современных сборках котлов есть модули зарядки, контроля и так далее. Простой ИБП выдает только 20-30 минут подпитки, когда инвертор способен обеспечить потоком электрозарядов оборудование на протяжении 3 часов и более.

Тип инвертора для котлаОсобенности
Off-lineПростейшие по сборке, выступающие резервными источниками питания. При работе котла от электросети, инвертор бездействует, но при снижении вольтажа в сети или отключении, вступает в работу. Аналогичный сценарий происходит и при скачках напряжения выше стандартного (260-300 В). По ценнику они от 4 000 рублей.
Line-interactiveУниверсальный вариант для котлов. Имеется весь функционал Off-line инвертора, добавляется еще и стабилизатор напряжения. Подобный агрегат повышает КПД работы котла + снижает частоту использование аккумулятора. Дорогие модели снабжены собственным источником питания, который может компенсировать сеть на 30-150 минут.
On-lineСамые топовые сборки с высоким ценником. В конструкции предусмотрен двойной алгоритм преобразования – сначала переменное в постоянное (до 12 В), а потом 12-вольтовое превращает в 220 В. с идеальной частотой в 50 Гц. Аккумуляторы в таких сборках являются буферное ёмкостью, что сводит риск поломки из-за напряжения к нулю. Другое дело, что КПД снижается до 85%.

Последние модели котельных инверторов относятся к наиболее дорогим. Жертва по КПД компенсируется защитой аппаратной части оборудования, но вот по удобству данный агрегат нельзя назвать оптимальным для 50% семей со средним уровнем достатка. Тут уже каждый решает для себя самостоятельно.

Обратите внимание: по аналогии с котлами, человек может покупать подобный инвертор и для холодильного оборудования. Условия отбора такие же.

Наиболее популярные модели от ТМ CyberPower, Exmork и POWERMAN ONLINE. По критериям отбора выделю 5 – минимальная требуемая мощность, диапазон по входному напряжению, амплитуда искажения синусоиды, КПД и наличие дополнительных защит.

Разбор механики поведения инверторов при использовании в быту и промышленности:

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]